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A STUDENT’S GUIDE TO BAYESIAN STATISTICS 12

	2	 1 	 CHAPTER MISSION STATEMENT

At the end of this chapter, the reader will understand the purpose of statistical inference, as well 
as recognise the similarities and differences between Frequentist and Bayesian inference. We also 
introduce the most important theorem in modern statistics: Bayes’ rule.

	2	 2 	 CHAPTER GOALS

As data scientists, we aim to build predictive models to understand complex phenomena. As 
a first approximation, we typically disregard those parts of the system that are not directly of 
interest. This deliberate omission of information makes these models statistical rather than deter-
ministic because there are some aspects of the system about which we are uncertain. There are 
two distinct approaches to statistical modelling: Frequentist (also known as Classical inference) 
and Bayesian inference. This chapter explains the similarities between these two approaches and, 
importantly, indicates where they differ substantively.

Usually, it is straightforward to calculate the probability of obtaining different data samples if we 
know the process that generated the data in the first place. For example, if we know that a coin 
is fair, then we can calculate the probability of it landing heads up (the probability equals 1/2). 
However, we typically do not have perfect knowledge of these processes, and it is the goal of statisti-
cal inference to derive estimates of the unknown characteristics, or parameters, of these mechanisms. 
In our coin example, we might want to determine its bias towards heads on the basis of the results 
of a few coin throws. Bayesian statistics allows us to go from what is known – the data (the results 
of the coin throw here) – and extrapolate backwards to make probabilistic statements about the 
parameters (the underlying bias of the coin) of the processes that were responsible for its genera-
tion. In Bayesian statistics, this inversion process is carried out by application of Bayes’ rule, which 
is introduced in this chapter. It is important to have a good understanding of this rule, and we will 
spend some time throughout this chapter and Part II developing an understanding of the various 
constituent components of the formula.

	2	 3
	� BAYES’ RULE – ALLOWING US TO GO FROM  
THE EFFECT BACK TO ITS CAUSE

Suppose that we know that a casino is crooked and uses a loaded die with a probability of rolling 
a 1, that is 1

3
1
62= × , twice its unbiased value. We could then calculate the probability that we roll 

two 1s in a row:

Pr(1,1| )
1
3

1
3

crooked casino = ×  =
1
9

. 	 (2.1)

Here we use Pr to denote a probability, with the comma here having the literal interpretation 
of and. Hence, Pr(1, 1) is the probability we obtain a 1 on the first roll and a 1 on the second.  
(Don’t worry if you don’t fully understand this calculation, as we will devote the entirety of 
the next chapter to working with probabilities.) In this case, we have presupposed a cause – the 
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the subjective worlds of frequentist and bayesian statistics 13

casino being crooked – to derive the probability of a particular effect – rolling two consecutive 
1s. In other words, we have calculated Pr( | )effect cause . The vertical line, | , here means given in 
probability, so Pr(1, 1 | )crooked casino  is the probability of throwing two consecutive 1s given 
that the casino is crooked.

Until the latter half of the seventeenth century, probability theory was chiefly used as a method 
to calculate gambling odds, in a similar vein to our current example. It was viewed as a dirty sub-
ject, not worthy of the attention of the most esteemed mathematicians. This perspective began 
to change with the intervention of the English Reverend Thomas Bayes, and slightly later and 
more famously (at the time at least), with the work done by the French mathematician Pierre 
Simon Laplace (see ‘Bayes’ rule or the Bayes–Price–Laplace rule?’ below for a short history of 
Bayes’ rule). They realised that it is possible to move in the opposite direction – to go from effect 
back to cause:

Pr Pr( | ) ( | ).effect cause cause effectBayes  theorem′ → 	 (2.2)

In order to take this leap, however, it was necessary to discover a rule, which later became known 
as Bayes’ rule or theorem. This can be written:

Pr
Pr Pr

Pr
( | )

( | ) ( )
( )

.cause effect
effect cause cause

effect
=

×
	 (2.3)

In the casino example, this formula tells us how to invert the original probability Pr(1, 1| )crooked casino  
to obtain a more useful quantity as a patron of said casino –Pr( |1, 1)crooked casino . In words, this 
is the probability that the casino is crooked given that we rolled two 1s. We do not show how to 
carry out this calculation now, and instead delay this until we learn about probability in Chapter 3. 
However, this process where we go from an effect back to a cause is the essence of inference. 
Bayes’ rule is central to the Bayesian approach to statistical inference. Before we introduce 
Bayesian inference, though, we first describe the history of Bayes’ rule.

Bayes’ rule or the Bayes–Price–Laplace rule? 

In 1748, the Scottish philosopher David Hume dealt a serious blow to a fundamental belief of Chris-

tianity by publishing an essay on the nature of cause and effect. In it, Hume argues that ‘causes and 

effects are discoverable, not by reason, but by experience’. In other words, we can never be certain 

about the cause of a given effect. For example, we know from experience that if we push a glass off 

the side of a table, it will fall and shatter, but this does not prove that the push caused the glass to 

shatter. It is possible that both the push and the shattering are merely correlated events, reflecting 

some third, and hitherto unknown, ultimate cause of both. Hume’s argument was unsettling to Chris-

tianity because God was traditionally known as the First Cause of everything. The mere fact that the 

world exists was seen as evidence of a divine creator that caused it to come into existence. Hume’s 

argument meant that we can never deal with absolute causes; rather, we must make do with probable 

causes. This weakened the link between a divine creator and the world that we witness and, hence, 

undermined a core belief of Christianity.

(Continued)
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A STUDENT’S GUIDE TO BAYESIAN STATISTICS 14

Around this time the Reverend Thomas Bayes of Tunbridge Wells (where this book’s author grew up!) 

began to ponder whether there might be a mathematical approach to cause and effect. 

Thomas Bayes was born around 1701 to a Presbyterian minister, Joshua Bayes, who oversaw a chap-

el in London. The Presbyterian Church at the time was a religious denomination persecuted for 

not conforming to the governance and doctrine of the Church of 

England. Being a non-conformist, the young Bayes was not per-

mitted to study for a university degree in England and so enrolled 

at the University of Edinburgh, where he studied theology. After 

university, Bayes was ordained as a minister of the Presbyterian 

Church by his clergyman father and began work as an assistant in 

his father’s ministry in London. Around 1734, Bayes moved south 

of London to the wealthy spa resort town of Tunbridge Wells and 

became minister of the Mount Sion chapel there. 

Around this time, Bayes began to think about how to apply math-

ematics, specifically probability theory, to the study of cause and 

effect (perhaps invigorated by the minerals in the spa town’s cold 

water). Specifically, Bayes wanted a mathematical way to go from 

an effect back to its cause. To develop his theory, he proposed a thought experiment: he imagined at-

tempting to guess the position of a ball on a table. Not perhaps the most enthralling of thought experi-

ments, but sometimes clear thinking is boring. Bayes imagined that he had his back turned to the table, 

and asks a friend to throw a cue ball onto its surface (imagine the table is big enough that we needn’t 

worry about its edges). He then asks his friend to throw a second ball, and report to Bayes whether it 

landed to the left or right of the first. If the ball landed to the right of the first, then Bayes reasoned that 

the cue ball is more likely to be on the left-hand side of the table, and vice versa if it landed to its left. 

Bayes and his friend continue this process where, each time, his friend throws subsequent balls and 

reports which side of the cue ball his throw lands. Bayes’ brilliant idea was that, by assuming all posi-

tions on the table were equally likely a priori, and using the results of the subsequent throws, he could 

narrow down the likely position of the cue ball on the table. For example, if all throws landed to the left 

of the cue ball, it was likely that the cue ball would be on the far right of the table. And, as more data 

(the result of the throws) was collected, he became more and more confident of the cue ball’s position. 

He had gone from an effect (the result of the throws) back to a probable cause (the cue ball’s position)!

Bayes’ idea was discussed by members of the Royal Society, but 

it seems that Bayes himself perhaps was not so keen on it, and 

never published this work. When Bayes died in 1761 his discovery 

was still languishing between unimportant memoranda, where 

he had filed it. It took the arrival of another, much more famous, 

clergyman to popularise his discovery. 

Richard Price was a Welsh minister of the Presbyterian Church, 

but was also a famous political pamphleteer, active in liberal 

causes of the time such as the American Revolution. He had con-

siderable fans in America and communicated regularly with Ben-

jamin Franklin, John Adams and Thomas Jefferson. Indeed, his 

fame and adoration in the United States reached such levels that 

in 1781, when Yale University conveyed two degrees, it gave one 

to George Washington and the other to Price. Yet today, Price is 

primarily known for the help that he gave his friend Bayes.

Bayes: c.1701–1761

Price: 1723–1791
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the subjective worlds of frequentist and bayesian statistics 15

When Bayes died, his family asked his young friend Richard Price to examine his mathematical papers. 

When Price read Bayes’ work on cause and effect he saw it as a way to counter Hume’s attack on 

causation (using an argument not dissimilar to the Intelligent Design hypothesis of today), and realised 

it was worth publishing. He spent two years working on the manuscript – correcting some mistakes 

and adding references – and eventually sent it to the Royal Society with a cover letter of religious bent. 

Bayes for his (posthumous) part of the paper did not mention religion. The Royal Society eventually 

published the manuscript with the secular title, ‘An Essay towards solving a Problem in the Doctrine 

of Chances’. Sharon McGrayne – a historian of Bayes – argues that, by modern standards, Bayes’ rule 

should be known as the Bayes–Price rule, since Price discovered Bayes’ work, corrected it, realised its 

importance and published it.

Given Bayes’ current notoriety, it is worth noting what he did not accomplish in his work. He did not 

actually develop the modern version of Bayes’ rule that we use today. He just used Newton’s notation 

for geometry to add and remove areas of the table. Unlike Price, he did not use the rule as proof for 

God, and was clearly not convinced by his own work since he failed to publish his papers. Indeed, it 

took the work of another, more notable, mathematician to improve on Bayes’ first step, and to elevate 

the status of inverse probability (as it was known at the time).

Pierre Simon Laplace was born in 1749 in Normandy, France, into 

a house of respected dignitaries. His father, Pierre, owned and 

farmed the estates of Maarquis, and was Syndic (an officer of the 

local government) of the town of Beaumont. The young Laplace 

(like Bayes) studied theology for his degree at the University of 

Caen. There, his mathematical brilliance was quickly recognised by 

others, and Laplace realised that maths was his true calling, not 

the priesthood. Throughout his life, Laplace did important work 

in many fields including analysis, differential equations, planetary 

orbits and potential theory. He may also have even been the first 

person to posit the existence of black holes – celestial bodies whose 

gravity is so great that even light can’t escape. However, here, we 

are most interested in the work he did on inverse probability theory. 

Independently of Bayes, Laplace had already begun to work on a 

probabilistic way to go from effect back to cause, and in 1774 pub-

lished ‘Mémoire sur la probabilité des causes par les évènemens’, in which he stated the principle’:

Si un évènement peut être produit par un nombre n de causes différentes, les probabilités 

de l’existence de ces causes prises de évènement, sont entre elses comes les probabilités de 

l’évènement prises de ces causes, et la probabilité de l’existence de chacune d’elles, est égale 

á la probabilité de l’évènement prise de cette cause, diviseé par la somme de toutes les prob-

abilités de l’évènement prises de chacune de ces causes.

This translates as (Laplace (1986)):

If an event can be produced by a number n of different causes, then the probabilities of these 

causes given the event are to each other as the probabilities of the event given the causes, and 

the probability of the existence of each of these is equal to the probability of the event given 

the cause, divided by the sum of all the probabilities of the event given each of these causes. 

(Continued)

Laplace: 1749–1827
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This statement of inverse probability is only valid when the causes are all equally likely. It was not 

until later than Laplace generalised this result to handle causes with different prior weights.

In 1781, Price visited Paris and told the Secretary of the French Royal Academy of Sciences, the 

Marquis of Condorcet, about Bayes’ discovery. This information eventually reached Laplace and 

gave him confidence to pursue his ideas in inverse probability. The trouble with his theory for 

going from an effect back to a cause was that it required an enormous number of calculations 

to be done to arrive at an answer. Laplace was not afraid of a challenge, however, and invented 

a number of incredibly useful techniques (for example, generating functions and transforms) to 

find an approximate answer. Laplace still needed an example application of his method that was 

easy enough for him to calculate, yet interesting enough to garner attention. His chosen data 

sample was composed of babies. Specifically, his sample comprised the numbers of males and 

females born in Paris from 1745 to 1770. This data was easy to work with because the outcome 

was binary – the child was recorded as being born a boy or girl – and was large enough to be able 

to draw conclusions from it. In the sample, a total of 241,945 girls and 251,527 boys were born. 

Laplace used this sample and his theory of inverse probability to estimate that there was a prob-

ability of approximately 10-42 that the sex ratio favoured girls rather than boys. On the basis of 

this tiny probability, he concluded that he was as ‘certain as any other moral truth’ that boys were 

born more frequently than girls. This was the first practical application of Bayesian inference 

as we know it now. Laplace went from an effect – the data in the birth records – to determine a 

probable cause – the ratio of male to female births. 

Later in his life, Laplace also wrote down the first modern version of Bayes’ mathematical rule 

that is used today, where causes could be given different prior probabilities. He published it in 

his “Théorie analytique des probabilités” in 1820 (although he probably derived the rule around 

1810–1814):

P
Hp

S Hp
=

.
;

ce qui donne les probabilités des diverses causes, lorsqu’elles ne sont  

pas toutes, également possible á priori.

On the left-hand side, P denotes the posterior probability of a given cause given an observed 

event. In the numerator on the right-hand side, H is the probability of an event occurring given 

that cause, p, is the a priori probability of that cause. In the denominator, S. denotes summation 

(the modern equivalent of this is S) over all possible causes, and H and p now represent the cor-

responding quantities to those in the numerator, but for each possible cause. Laplace actually 

presented two versions of the rule – one for discrete random variables (as we show above) and 

another for continuous variables. The typesetting he used for the continuous case, however, did 

not allow him to write limits on integrals, meaning that the numerator and denominator look 

the same.

History has been unfair to Laplace and Price. If they were alive today, the theory would, no doubt, be 

known as the Bayes–Price–Laplace rule. We hope by including this short biographical section that this 

will encourage you, in your own work, to give credit to others where it is due. We, in particular, would 

like to thank Sharon McGrayne for her excellent book, The theory that would not die: how Bayes’ rule 

cracked the enigma code, hunted down Russian submarines, & emerged triumphant from two centu-

ries of controversy, that served as an invaluable reference to this section, and we encourage others 

to read it to learn of the tempestuous history of Bayesian inference [26].
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the subjective worlds of frequentist and bayesian statistics 17

	2	 4 	 THE PURPOSE OF STATISTICAL INFERENCE

How much does a particular drug affect a patient’s condition? What can an average student earn 
after obtaining a college education? Will the Democrats win the next US presidential election? In 
life, we develop theories and use these to make predictions, but testing those theories is not easy. 
Life is complicated, and it is often impossible to exactly isolate the parts of a system which we 
want to examine. The outcome of history is determined by a complex nexus of interacting ele-
ments, each of which contributes to the reality that we witness. In the case of a drug trial, we may 
not be able to control the diets of participants and are certainly unable to control for their idi-
osyncratic metabolisms, both of which could impact the results we observe. There are a range of 
factors which affect the wage that an individual ultimately earns, of which education is only one. 
The outcome of the next US presidential election depends on party politics, the performance of 
the incumbent government and the media’s portrayal of the candidates.

In life, noise obfuscates the signal. What we see often appears as an incoherent mess that lacks 
any appearance of logic. This is why it is difficult to make predictions and test theories about 
the world. It is like trying to listen to a classical orchestra which is playing on the side of a busy 
motorway, while we fly overhead in a plane. Statistical inference allows us to focus on the music 
by separating the signal from the noise. We will hear ‘Nessun Dorma’ played!

Statistical inference is the logical framework which we can use to trial our beliefs about the noisy 
world against data. We formalise our beliefs in models of probability. The models are probabilistic 
because we are ignorant of many of the interacting parts of a system, meaning we cannot say 
with certainty whether something will, or will not, occur. Suppose that we are evaluating the effi-
cacy of a drug in a trial. Before we carry out the trial, we might believe that the drug will cure 10% 
of people with a particular ailment. We cannot say which 10% of people will be cured because 
we do not know enough about the disease or individual patient biology to say exactly whom. 
Statistical inference allows us to test this belief against the data we obtain in a clinical trial.

There are two predominant schools of thought for carrying out this process of inference: 
Frequentist and Bayesian. Although this book is devoted to the latter, we will now spend some 
time comparing the two approaches so that the reader is aware of the different paths taken to 
their shared goal.

	2	 5 	 THE WORLD ACCORDING TO FREQUENTISTS

In Frequentist (or Classical) statistics, we suppose that our sample of data is the result of one of 
an infinite number of exactly repeated experiments. The sample we see in this context is assumed 
to be the outcome of some probabilistic process. Any conclusions we draw from this approach 
are based on the supposition that events occur with probabilities, which represent the long-run 
frequencies with which those events occur in an infinite series of experimental repetitions. For 
example, if we flip a coin, we take the proportion of heads observed in an infinite number of 
throws as defining the probability of obtaining heads. Frequentists suppose that this probability 
actually exists, and is fixed for each set of coin throws that we carry out. The sample of coin flips 
we obtain for a fixed and finite number of throws is generated as if it were part of a longer (that 
is, infinite) series of repeated coin flips (see the left-hand panel of Figure 2.1).

In Frequentist statistics the data are assumed to be random and results from sampling from a fixed 
and defined population distribution. For a Frequentist the noise that obscures the true signal of 
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the real population process is attributable to sampling variation – the fact that each sample we pick 
is slightly different and not exactly representative of the population.

We may flip our coin 10 times, obtaining 7 heads even if the long-run proportion of heads is 1
2
.  

To a Frequentist, this is because we have picked a slightly odd sample from the population of 
infinitely many repeated throws. If we flip the coin another 10 times, we will likely get a different 
result because we then pick a different sample.

Figure 2.1  The Frequentist (left) and Bayesian (right) approaches to probability.

...

many throws

1 0 1

0 1

1

0 0

...

...

probability

0.52

0.48
impossible certain

probability

0 1

Frequentist Bayesian

	2	 6 	 THE WORLD ACCORDING TO BAYESIANS

Bayesians do not imagine repetitions of an experiment in order to define and specify a probabil-
ity. A probability is merely taken as a measure of certainty in a particular belief. For Bayesians the 
probability of throwing a ‘heads’ measures and quantifies our underlying belief that before we 
flip the coin it will land this way.

In this sense, Bayesians do not view probabilities as underlying laws of cause and effect. They are 
merely abstractions which we use to help express our uncertainty. In this frame of reference, it is 
unnecessary for events to be repeatable in order to define a probability. We are thus equally able 
to say, ‘The probability of a heads is 0.5’ or ‘The probability of the Democrats winning the 2020 
US presidential election is 0.75’. Probability is merely seen as a scale from 0, where we are certain 
an event will not happen, to 1, where we are certain it will (see the right-hand panel of Figure 2.1).

A statement such as ‘The probability of the Democrats winning the 2020 US presidential election 
is 0.75’ is hard to explain using the Frequentist definition of a probability. There is only ever one 
possible sample – the history that we witness – and what would we actually mean by the ‘popu-
lation of all possible US elections which happen in the year 2020’?

For Bayesians, probabilities are seen as an expression of subjective beliefs, meaning that they can 
be updated in light of new data. The formula invented by the Reverend Thomas Bayes provides 
the only logical manner in which to carry out this updating process. Bayes’ rule is central to 
Bayesian inference whereby we use probabilities to express our uncertainty in parameter values 
after we observe data.

Bayesians assume that, since we are witness to the data, it is fixed, and therefore does not vary. We 
do not need to imagine that there are an infinite number of possible samples, or that our data are 
the undetermined outcome of some random process of sampling. We never perfectly know the 
value of an unknown parameter (for example, the probability that a coin lands heads up). This 
epistemic uncertainty (namely, that relating to our lack of knowledge) means that in Bayesian 
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inference the parameter is viewed as a quantity that is probabilistic in nature. We can interpret this 
in one of two ways. On the one hand, we can view the unknown parameter as truly being fixed in 
some absolute sense, but our beliefs are uncertain, and thus we express this uncertainty using prob-
ability. In this perspective, we view the sample as a noisy representation of the signal and hence 
obtain different results for each set of coin throws. On the other hand, we can suppose that there 
is not some definitive true, immutable probability of obtaining a heads, and so for each sample 
we take, we unwittingly get a slightly different parameter. Here we get different results from each 
round of coin flipping because each time we subject our system to a slightly different probability of 
its landing heads up. This could be because we altered our throwing technique or started with the 
coin in a different position. Although these two descriptions are different philosophically, they are 
not different mathematically, meaning we can apply the same analysis to both.

	2	 7
	� DO PARAMETERS ACTUALLY EXIST AND  
HAVE A POINT VALUE?

For Bayesians, the parameters of the system are taken to vary, whereas the known part of the  
system – the data – is taken as given. Frequentist statisticians, on the other hand, view the unseen 
part of the system – the parameters of the probability model – as being fixed and the known parts 
of the system – the data – as varying. Which of these views you prefer comes down to how you 
interpret the parameters of a statistical model.

In the Bayesian approach, parameters can be viewed from two perspectives. Either we view the 
parameters as truly varying, or we view our knowledge about the parameters as imperfect. The 
fact that we obtain different estimates of parameters from different studies can be taken to reflect 
either of these two views. 

In the first case, we understand the parameters of interest as varying – taking on different values 
in each of the samples we pick (see the top panel of Figure 2.2). For example, suppose that we 
conduct a blood test on an individual in two consecutive weeks, and represent the correlation 
between the red and white cell count as a parameter of our statistical model. Due to the many fac-
tors that affect the body’s metabolism, the count of each cell type will vary somewhat randomly, 
and hence the parameter value may vary over time. In the second case, we view our uncertainty 
over a parameter’s value as the reason we estimate slightly different values in different samples. 
This uncertainty should, however, decrease as we collect more data (see the middle panel of 
Figure 2.2). Bayesians are more at ease in using parameters as a means to an end – taking them 
not as real immutable constants, but as tools to help make inferences about a given situation.

The Frequentist perspective is less flexible and assumes that these parameters are constant, or 
represent the average of a long run – typically an infinite number – of identical experiments. 
There are occasions when we might think that this is a reasonable assumption. For example, 
if our parameter represented the probability that an individual taken at random from the UK 
population has dyslexia, it is reasonable to assume that there is a true, or fixed, population value 
of the parameter in question. While the Frequentist view may be reasonable here, the Bayesian 
view can also handle this situation. In Bayesian statistics these parameters can be assumed fixed, 
but that we are uncertain of their value (here the true prevalence of dyslexia) before we measure 
them, and use a probability distribution to reflect this uncertainty.
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But there are circumstances when 
the Frequentist view runs into 
trouble. When we are estimating 
parameters of a complex distri-
bution, we typically do not view 
them as actually existing. Unless 
you view the Universe as being 
built from mathematical building 
blocks,1 then it seems incorrect to 
assert that a given parameter has 
any deeper existence than that 
with which we endow it. The less 
restrictive Bayesian perspective 
here seems more reasonable.

The Frequentist view of parameters  
as a limiting value of an average 
across an infinity of identically 
repeated experiments (see the 
bottom panel of Figure 2.2) also 
runs into difficulty when we think 
about one-off events. For example, 
the probability that the Democrat 
candidate wins in the 2020 US 
election cannot be justified in this 
way, since elections are never rerun 
under the exact same conditions.

	2	 8 	 FREQUENTIST AND BAYESIAN INFERENCE

The Bayesian inference process is the only logical and consistent way to modify our beliefs to 
account for new data. Before we collect data we have a probabilistic description of our beliefs, 
which we call a prior. We then collect data, and together with a model describing our theory, 
Bayes’ formula allows us to calculate our post-data or posterior belief:

prior data posterior+  →model . 	 (2.4)

For example, suppose that we have a prior belief that a coin is fair, meaning that the probabil-
ity of it landing heads up is 1/2. We then throw it 10 times and find that it lands heads up every 
time; this is our data. Bayes’ rule tells us how to combine the prior with the data to result in  
our updated belief that the coin is fair. Ignore for the moment that we have not explained the 
meaning of this mysterious prior, as we shall introduce this element properly in Section 2.9.2.

1See [37] for an interesting argument for this hypothesis.

Figure 2.2  The Bayesian (top and middle) and 
Frequentist perspectives on parameters. In the top 
panel, the urn holds a large number of parameter 
values – a population distribution – that we sample from 
each time we pick a new sample. These parameters, in 
turn, determine the data that we obtain in our sample. 
The middle panel shows the Bayesian view where the 
uncertainty about a parameter’s true value (shown 
in the box) decreases as we collect more data. The 
bottom panel represents the Frequentist view where 
parameters represent averages across an infinite 
number of exactly repeated experiments (represented 
by the many worlds).
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In inference, we want to draw conclusions based purely on the rules of probability. If we wish 
to summarise our evidence for a particular hypothesis, we describe this using the language 
of probability, as the ‘probability of the hypothesis given the data obtained’. The difficulty 
is that when we choose a probability model to describe a situation, it enables us to calculate 
the ‘probability of obtaining our data given our hypothesis being true’ – the opposite of what 
we want. This probability is calculated by accounting for all the possible samples that could 
have been obtained from the population, if the hypothesis were true. The issue of statistical 
inference, common to both Frequentists and Bayesians, is how to invert this probability to 
get the desired result.

Frequentists stop here, using this inverse probability as evidence for a given hypothesis. They 
assume a hypothesis is true and on this basis calculate the probability of obtaining the observed 
data sample. If this probability is small, then it is assumed that it is unlikely that the hypoth-
esis is true, and we reject it. In our coin example, if we throw the coin 10 times and it always 
lands heads up (our data), the probability of this data occurring given that the coin is fair (our 
hypothesis) is small. In this case, Frequentists would reject the hypothesis that the coin is fair. 
Essentially, this amounts to setting Pr( | ) 0hypothesis data = . However, if this probability is not 
below some arbitrary threshold, then we do not reject the hypothesis. But Frequentist inference 
is then unclear about what probability we should ascribe to the hypothesis. Surely it is non-zero, 
but exactly how confident are we in it? In Frequentist inference we do not get an accumulation 
of evidence for a particular hypothesis, unlike in Bayesian statistics.

In reality, Frequentist inference is slightly different to what we described. Since the probability 
of obtaining any one specific data sample is very small, we calculate the probability of obtaining 
a range of possible samples to obtain a more usable probability. In particular, Frequentists calcu-
late the probability of obtaining a sample as extreme as, or more extreme than, the one actually 
obtained, assuming a certain hypothesis to be true. For example, imagine we have a hypothesis 
that people’s heights are normally distributed with a mean of 1.55m and a standard deviation 
of 0.3m. Then suppose we collect a sample of one individual with a height of 2.5m. To test the 
validity of the hypothesis, Frequentists calculate the probability of obtaining a height greater 
than, or equal to, 2.5m, assuming the hypothesis to be true. However, we did not actually witness 
an individual with a height greater than 2.5m. In Frequentist inference we must invent fictitious 
samples to test a hypothesis!

Bayes’ formula allows us to circumvent these difficulties by inverting the Frequentist probability 
to get the ‘probability of the hypothesis given the actual data we obtained’. In our heights exam-
ple, this would be the probability that the mean population height is 1.55m and has a standard 
deviation of 0.3m given that our data consists of a single individual of height 2.5m. In Bayesian 
inference, there is no need for an arbitrary threshold in the probability in order to validate the 
hypothesis. All information is summarised in this (posterior) probability and there is no need for 
explicit hypothesis testing. However, to use Bayes’ rule for inference, we must supply a prior – an 
additional element compared to Frequentist statistics. The prior is a probability distribution that 
describes our beliefs in a hypothesis before we collect and analyse the data. In Bayesian inference, 
we then update this belief to produce something known as a posterior, which represents our 
post-analysis belief in the hypothesis.

The next few, albeit silly, examples illustrate a difference in methodology but also, perhaps more 
significantly, in philosophy between the two different approaches.
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2.8.1 The Frequentist and Bayesian murder trials

Assume you find yourself in the unfortunate situation where you are (hopefully falsely) accused 
of murder, and face a trial by jury. A complication in the tale is that you personally have a choice 
over the method used by the jury to assign guilt: either Frequentist or Bayesian. Another unfortu-
nate twist is that the legal system of the country starts by presuming guilt rather than innocence.

Let’s assume that security camera footage indicates you were in the same house as the victim – 
Sally – on the night of her demise.

If you choose the Frequentist trial, your jurors start by specifying a model based on previous 
trials, which assigns a probability of your being seen by the security camera if you were guilty. 
They use this to make the statement that ‘If you did commit the murder, then 30% of the time 
you would have been seen by the security camera’ based on a hypothetical infinity of repetitions 
of the same conditions. Since Pr( | )you were seen by the camera guilt  is not sufficiently unlikely 
(the p value is not below 5%), the jurors cannot reject the null hypothesis of guilt, and you are 
sentenced to life in prison.

In a Bayesian trial, the jury is first introduced to an array of evidence, which suggests that you neither 
knew Sally nor had any previous record of violent conduct, being otherwise a perfectly respectable 
citizen. Furthermore, Sally’s ex-boyfriend is a multiple offending-violent convict on the run from 
prison after being sentenced by a judge on the basis of Sally’s own witness testimony. Using this 
information, the jury sets a prior probability of the hypothesis that you are guilty equal to 1

1000  (don’t 
worry about what is meant by a ‘prior’ as we devote all of Chapter 5 to this purpose). The jury then 
uses the same model as the Frequentists which indicates that 30% of the time you would have been 
seen by the camera if you were guilty. However, the jury then coolly uses Bayes’ rule and concludes 
that the probability of your committing the crime is 1

1000  (see Section 2.13.1 for a full description 
of this calculation). Based on this evidence, the jury acquits you, and you go home to your family.

2.8.2 Radio control towers

In a hypothetical war, two radio control workers, Mr Pearson (from the county of Frequentland) 
and Mr Laplace (from the county of Bayesdom), sit side by side and are tasked with finding an 
enemy plane that has been spotted over the country’s borders. They will each feed this infor-
mation to the nearest air force base(s), which will respond by sending up planes of their own. 
There are, however, two different air forces – one for each county. Although the air forces of 
Frequentland and Bayesdom share airbases, they are distinct, and only respond to Mr Pearson’s 
and Mr Laplace’s advice, respectively. The ongoing war, though short, has been costly to both 
allies, and they each want to avoid needless expenditure while still defending their territory.

Mr Pearson starts by inputting the plane’s radar information into a computer program that uses 
a model of a plane’s position which has been calibrated against historical enemy plane data. The 
result comes out instantly:

The plane is most likely 5 miles North of the town of Tunbridge Wells.

Without another moment’s thought, Mr Pearson radios the base of Tunbridge Wells, telling 
them to scramble all 10 available Frequentist fighter jets immediately. He then gets up and 
makes himself a well-earned coffee.
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Mr Laplace knows from experience that the enemy has used three different flight paths to attack 
in the past. Accordingly, he gives these regions a high probability density in his prior for the 
plane’s current location and feeds this into the same computer program used by Mr Pearson. The 
output this time is different. By using the optional input, the program now outputs a map with 
the most likely regions indicated, rather than a single location. The highest posterior density 
is over the region near Tunbridge Wells, where Mr Pearson radioed, although the map suggests 
there are two other towns which might also be victims of the plane’s bombing. Accordingly,  
Mr Laplace radios to Tunbridge Wells, asking them to send up four jets, and to the other two 
towns, asking them to send up two jets each. At the end of all this, Mr Laplace remains seated, 
tired but contented that he has done his best for his own.

The enemy bomber turned out to be approaching Berkstad, one of the towns which Mr Laplace 
radioed. The Bayesdom jets intercept the encroaching plane and escort it out of allied airspace. 
Mr Laplace is awarded a medal in honour of his efforts. Pearson looks on jealously.

	2	 9 	 BAYESIAN INFERENCE VIA BAYES’ RULE

Bayes’ rule tells us how to update our prior beliefs in order to derive better, more informed, beliefs 
about a situation in light of new data. In Bayesian inference, we test hypotheses about the real 
world using these posterior beliefs. As part of this process, we estimate characteristics that interest 
us, which we call parameters, that are then used to test such hypotheses. From this point onwards 
we will use θ  to represent the unknown parameter(s) which we want to estimate.

The Bayesian inference process uses Bayes’ rule to estimate a probability distribution for those 
unknown parameters after we observe the data. (Don’t worry if you don’t know what is meant by 
a probability distribution since we shall devote the entirety of Chapter 3 to this purpose.) However, 
it is sufficient for now to think of probability distributions as a way to represent uncertainty for 
unknown quantities.

Bayes’ rule as used in statistical inference is of the form:

p data
p data p

p data
( | )

( | ) ( )
( )

,θ
θ θ

=
×

	 (2.5)

where we use p  to indicate a probability distribution which may represent either probabilities 
or, more usually, probability densities (see Section 3.3.2 for a description of their distinction). 
We shall now spend the next few sections describing, in short, the various elements of expres-
sion (2.5). This will only be a partial introduction since we spend the entirety of Part II on an 
extensive discussion of each of the constituent components.

2.9.1 Likelihoods

Starting with the numerator on the right-hand side of expression (2.5), we come across the term 
p data( | )θ , which we call the likelihood, which is common to both Frequentist and Bayesian anal-
yses. This tells us the probability of generating the particular sample of data if the parameters 
in our statistical model were equal to θ. When we choose a statistical model, we can usually 
calculate the probability of particular outcomes, so this is easily obtained. Imagine that we have 
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a coin that we believe is fair. By fair, we mean that the probability of the coin landing heads up 
is θ = 1

2
. If we flip the coin twice, we might suppose that the outcomes are independent events 

(see Section 3.4), and hence can calculate the probabilities of the four possible outcomes by 
multiplying the probabilities of the individual outcomes:

Pr Pr Pr( | ) ( | ) ( | )
1
2

1
2

1
4

1
2

1
2

1
2H H H H, θ θ θ= = = × = = × =

Pr Pr Pr( | ) ( | ) ( | )
1
2

1
2

1
4

1
2

1
2

1
2H T H T, θ θ θ= = = × = = × = 	

(2.6)

Pr Pr Pr( | ) ( | ) ( | )
1
2

1
2

1
4

1
2

1
2

1
2T H T H, θ θ θ= = = × = = × =

Pr Pr Pr( | ) ( | ) ( | )
1
2

1
2

1
4

1
2

1
2

1
2T T T T, .θ θ θ= = = × = = × =

(Don’t worry if you don’t understand the logic in the above, as we devote the whole of 
Chapter 4 to understanding likelihoods.)

2.9.2 Priors

The next term in the numerator of expression (2.5) p( )θ , is the most controversial part of the 
Bayesian formula, which we call the prior distribution of θ. It is a probability distribution which rep-
resents our pre-data beliefs across different values of the parameters in our model, θ. This appears, 
at first, to be counterintuitive, particularly if you are familiar with the world of Frequentist statis-
tics, which does not require us to state our beliefs explicitly (although we always do implicitly, 
as we explain in Section 2.10). Continuing the coin example, we might assume that we do not 

know whether the coin is fair or biased 
beforehand, so suppose all possible val-
ues of θ ∈[0, 1]  – which represents the 
probability of the coin falling heads  
up – are equally likely. We can rep-
resent these beliefs by a continuous 
uniform probability density on this 
interval (see the black line in Figure 2.3).  
More sensibly, however, we might 
believe that coins are manufactured in 
a way such that their weight distribu-
tion is fairly evenly distributed, mean-
ing that we expect that the majority of 
coins are reasonably fair. These beliefs 
would be more adequately represented 
by a prior similar to the one shown by 
the red line in Figure 2.3.

The concept of priors will be covered 
in detail in Chapter 5.

Figure 2.3  Two different prior distributions: a 
uniform prior, where we believe all values of θθ 
(corresponding to the probability of throwing a 
heads) are equally likely (black line), and another 
where we believe that the coin is most likely fair 
before we throw it (red line).
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2.9.3 The denominator

The final term on the right-hand side of expression (2.5) in the denominator is p data( ). This rep-
resents the probability of obtaining our particular sample of data if we assume a particular model 
and prior. We will mostly postpone discussion of this term until Chapter 6 when we understand 
better the significance of likelihoods and priors. However, for our purposes here it suffices to say 
that the denominator is fully determined by our choice of prior and likelihood function. While 
it appears simple, this is deceptive, and it is partly the difficulty with calculating this term that 
leads to the introduction of computational methods that we discuss in Part IV.

The concept of the denominator will be covered in detail in Chapter 6.

2.9.4 Posteriors: the goal of Bayesian inference

The posterior probability distribution p data( | )θ  is the main goal of Bayesian inference.  
For example, we might want to compute the probability distribution representing our post-
experimental beliefs of the inherent bias, θ, of a coin, given that it was flipped 10 times and it 
landed heads up 7 times. If we use Bayes’ rule, assuming the likelihood model specified in Section 
2.9.1, and the uniform prior shown in Figure 2.3 (black line), then the result is the posterior  
distribution shown as the grey line in Figure 2.4. Here, the peak of the distribution occurs at 
θ = 0.7, which corresponds exactly with the percentage of ‘heads’ obtained in the experiment.

The posterior distribution summarises our uncertainty over the value of a parameter. If the dis-
tribution is narrower, then this indicates that we have greater confidence in our estimates of the 
parameter’s value. More narrow posterior distributions can be obtained by collecting more data. In 
Figure 2.4, we compare the posterior distribu-
tion for the previous case where 7 out of 10 
times the coin landed heads up with a new, 
larger, sample where 70 out of 100 times the 
same coin comes up heads. In both cases, 
we obtained the same ratio of heads to tails, 
resulting in the same peak value at θ = 0.7.  
However, in the latter case, since we have 
more evidence to support our claim, we end 
up with greater certainty about the parame-
ter value after the experiment.

The posterior distribution is also used to 
predict future outcomes of an experiment 
and for model testing. However, we leave 
discussion of these until Chapter 7.

	2	 10
	� IMPLICIT VERSUS 
EXPLICIT 
SUBJECTIVITY

One of the major arguments levied against 
Bayesian statistics is that it is subjective due 
to its dependence on the analyst specifying 

Figure 2.4  Posterior distributions for θθ – the 
probability that a coin landing heads up when 
flipped. The grey line represents the posterior 
probability distribution function (PDF) resulting 
from a data sample where 7 out of 10 times 
the coin came up heads. The red line is the 
posterior probability distribution function for 
the case where 70 out of 100 times the coin 
came up heads. Both of the posteriors assume 
a binomial likelihood and uniform prior (don’t 
worry if these mean nothing to you as we will 
introduce these concepts in Chapters 4 and 5).
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their pre-experimental beliefs through priors. This experimenter prejudice towards certain out-
comes is said to bias the results away from the types of fair, objective outcomes resultant from a 
Frequentist analysis.

We argue that all analyses involve a degree of subjectivity, which is either explicitly stated 
or, more often, implicitly assumed. In a Frequentist analysis, the statistician typically selects 
a model of probability which depends on a range of assumptions. These assumptions are 
often justified explicitly, revealing their suggestive nature. For example, the simple linear 
regression model is often used, without justification, in applied Frequentist analyses. This 
model makes assumptions about the relationships between the dependent and independent 
variables that may, or may not, be true. In a Bayesian approach, we more typically build our 
models from the ground up, meaning that we are more aware of the assumptions inherent 
in the approach.

In applied research, there is a tendency among scientists to choose data to include in an analysis 
to suit one’s needs, although this practice should really be discouraged (see [20]). The choice of 
which data points to include is subjective, and the underlying logic behind this choice is more 
often than not kept opaque from the reader.

A further source of subjectivity is the way in which models are checked and tested. In analyses, 
both Frequentist and Bayesian, there is a need to exercise (subjective) judgement in suggesting 
a methodology which will be used in this process. We would argue that Bayesian analysis allows 
greater flexibility and a more suitable methodology for this process because it accounts for the 
inherent uncertainty in our estimates.

In contrast to the examples of subjectivity mentioned above, Bayesian priors are explicitly 
stated. This makes this part of the analysis openly available to the reader, meaning it can be 
interrogated and debated. This transparent nature of Bayesian statistics has led some to suggest that 
it is honest. While Frequentist analyses hide behind a fake veil of objectivity, Bayesian equivalents 
explicitly acknowledge the subjective nature of knowledge.

Furthermore, the more data that is collected, (in general) the less impact the prior exerts on pos-
terior distributions. In any case, if a slight modification of priors results in a different conclusion 
being reached, it must be reported by the researcher.

Finally, comparing the Frequentist and Bayesian approaches to the pursuit of knowledge, we 
find that both approaches require a subjective judgement to be made. In each case, we want 
to obtain p data( | )θ  – the probability of the parameter or hypothesis under investigation, 
given the data set which has been observed. In Frequentist hypothesis testing we do not 
calculate this quantity directly, but use a rule of thumb. We calculate the probability that the 
data set would, in fact, have been more extreme than those we actually obtained assuming 
a null (the given, default) hypothesis is true. If the probability is sufficiently small, typically 
less than a cut-off of 5% or 1%, then we reject the null. This choice of threshold probability –  
known as a statistical test’s size – is completely arbitrary, and subjective. In Bayesian statistics, 
we instead use a subjective prior to invert the likelihood from p data p data( | ) ( | )θ θ→ . There is 
no need to accept or reject a null hypothesis and consider an alternative since all the infor-
mation is neatly summarised in the posterior. In this way we see a symmetry in the choice 
of Frequentist test size and Bayesian priors; they are both required to invert the likelihood to 
obtain a posterior.
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	2	 11 	 CHAPTER SUMMARY

This chapter has focused on the philosophy of statistical inference. Statistical inference is the 
process of inversion required to go from an effect (the data) back to a cause (the process or param-
eters). The trouble with this inversion is that it is generally much easier to do things the other 
way round: to go from a cause to an effect. Frequentists and Bayesians start by defining a forward 
probability model that can generate data (the effect) from a given set of parameters (the cause). 
The method that they each use to run this model in reverse and determine the probability for a 
cause is different. Frequentists assume that if the probability of generating the data (actually data 
as extreme as or more extreme than that obtained) from a particular cause is small, then the cause 
is rejected; the probability of that cause is concluded to be zero. The set of all non-rejected causes 
then forms a confidence interval that contains the actual cause with some measure of certainty. 
Bayesians instead carry out the inversion formally using Bayes’ rule. This results in an accumula-
tion of evidence for each cause, rather than a binary ‘yes’ or ‘no’ as for the Frequentist case.

Frequentists and Bayesians also differ in their view on probabilities. Frequentists view prob-
abilities as the frequency at which an event occurs in an infinite series of experimental 
repetitions. In this sense Frequentists view probabilities as fixed laws that actually exist inde-
pendent of the individual analyst. Because they are fixed, it does not make sense to update 
them. Similarly, in the Frequentist viewpoint, it does not make sense to define probabilities 
for one-off events, where an infinite series of experimental reproductions is not possible. 
Bayesians take a more general view on probabilities. They see probabilities as measuring the 
strength of an individual’s underlying belief in the likelihood of some outcome. For Bayesians 
probabilities are only defined in relation to a particular analyst and are hence, by their very 
nature, subjective. Since probabilities measure beliefs, they can be updated in light of new 
data. The only correct way to update probabilities is through Bayes’ rule, which Bayesians 
use to do statistical inference. Because Bayesian probabilities measure a subjective belief in an 
outcome, they can be used for all categories of events, from those that could in some way be 
infinitely repeated (for example, coin flips) or one-off events (for example, the outcome of the 
2020 US presidential election).

One argument that is often levied against Bayesian approaches to inference is that they 
are subjective, in contrast to the objectivity of Frequentism. We argued that all analytical 
approaches to inference are inherently subjective at some level. Beginning with the data selec-
tion process, the analyst often makes a subjective judgement of which data to include. The 
choice of a specific probability model is also inherently subjective and is typically justified by 
making assumptions about the data-generating process. In Frequentist inference the choice of 
the threshold probability for null hypothesis testing is also arbitrary and inherently depends 
on the analyst. Bayesian inference has priors, which should always be explicitly stated in an 
analysis. That priors are explicitly stated means that they can be debated and interrogated in 
a transparent fashion. While priors are inherently subjective, this does not mean they cannot 
be informed by data. In fact, in analyses that are repeated at different points in time, it often 
makes sense to use the posterior of a previous analysis as a prior for a new one (see Chapter 7).

In this chapter, we also introduced Bayes’ rule for inference and discussed briefly its constituent 
parts. The Bayesian formula is the central dogma of Bayesian inference. However, in order to use 
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this rule for statistical analyses, it is necessary to understand and, more importantly, be able to 
manipulate probability distributions. The next chapter is devoted to this cause.

	2	 12	 CHAPTER OUTCOMES

The reader should now be familiar with the following concepts:

•• the goals of statistical inference

•• the difference in interpretation of probabilities for Frequentists versus Bayesians

•• the differences in the Frequentist and Bayesian approaches to inference

	2	 13	 APPENDIX

2.13.1 The Frequentist and Bayesian murder trials

In the Bayesian trial the probability of guilt if you are seen by the security camera on the night 
of the murder is:

p guilt security camera footage
p security camera footage gui

( | )
( |

=
llt p guilt

p security camera footage
) ( )

( )
×

                            =
×

× + ×

30
100

1
1000

30
100

999
1000

30
100

1
1000

	 (2.7)

                            =
1

1000
.

In the above equation we assume that the security camera is hidden, and hence a murderer does 
not change their behaviour to avoid being seen, meaning that the probability of being seen by 
the security camera in each case is 30%. We have also assumed that the footage is itself unin-
formative about the motivations of an individual; it is merely indicative of a person’s location at 
a given time. In other words, we are supposing that criminals and innocents cannot be differenti-
ated by their actions on the video.

	2	 14	 PROBLEM SETS

Problem 2.1 The deterministic nature of random coin throwing

Suppose that, in an idealised world, the ultimate fate of a thrown coin – heads or tails – is deter-
ministically given by the angle at which you throw the coin and its height above a table. Also 
in this ideal world, the heights and angles are discrete. However, the system is chaotic2 (highly 
sensitive to initial conditions), and the results of throwing a coin at a given angle and height are 
shown in Table P2.1.

2The authors of the following paper actually experimentally tested this and found it to be the case, “The 

three-dimensional dynamics of the die throw”, Chaos, Kapitaniak et al. (2012).
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Problem 2.1.1 Suppose that all 
combinations of angles and heights 
are equally likely to be chosen. 
What is the probability that the 
coin lands heads up?

Problem 2.1.2 Now suppose that 
some combinations of angles and 
heights are more likely to be chosen 
than others, with the probabili-
ties shown in Table P2.2. What are 
the new probabilities that the coin 
lands heads up?

Problem 2.1.3 We force the coin-
thrower to throw the coin at an 
angle of 45 degrees. What is the 
probability that the coin lands 
heads up?

Problem 2.1.4 We force the coin-
thrower to throw the coin at a 
height of 0.2m. What is the prob-
ability that the coin lands heads up?

Problem 2.1.5 If we constrained 
the angle and height to be fixed, 
what would happen in repetitions 
of the same experiment?

Problem 2.1.6 In light of the pre-
vious question, comment on the 
Frequentist assumption of exact 
repetitions of a given experiment.

Problem 2.2 Objections  
to Bayesianism

The following criticisms of Bayesian statistics are raised in an article by Gelman [4]. Provide a 
response to each of these.

Problem 2.2.1 ‘As scientists we should be concerned with objective knowledge rather than 
subjective belief.’

Problem 2.2.2 ‘Subjective prior distributions don’t transfer well from person to person.’

Table P2.1  The results of a coin throw from a given 
angle and height above a table.

Height above table (m)

Angle (degrees) 0.2 0.4 0.6 0.8 1

0 T H T T H

45 H T T T T

90 H H T T H

135 H H T H T

180 H H T H H

225 H T H T T

270 H T T T H

315 T H H T T

Table P2.2  The probability that a given person 
throws a coin at a particular angle and at a certain 
height above a table.

Height above table (m)

Angle (degrees) 0.2 0.4 0.6 0.8 1

0 0.05 0.03 0.02 0.04 0.04

45 0.03 0.02 0.01 0.05 0.02

90 0.05 0.03 0.01 0.03 0.02

135 0.02 0.03 0.04 0.00 0.04

180 0.03 0.02 0.02 0.00 0.03

225 0.00 0.01 0.04 0.03 0.02

270 0.03 0.00 0.03 0.01 0.04

315 0.02 0.03 0.03 0.02 0.01
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Problem 2.2.3 ‘There’s no good objective principle for choosing a noninformative prior … 
Where do prior distributions come from, anyway?’

Problem 2.2.4 A student in a class of mine: ‘If we have prior expectations of a donkey and our 
dataset is a horse then Bayesians estimate a mule.’

Problem 2.2.5 ‘Bayesian methods seem to quickly move to elaborate computation.’

Problem 2.3 Model choice

Suppose that you have been given the data contained in subjective_overfitShort.csv and 
are asked to find a ‘good’ statistical model to fit the ( , )x y  data.

Problem 2.3.1 Fit a linear regression model using least squares. How reasonable is the fit?

Problem 2.3.2 Fit a quintic (powers up to the fifth) model to the data. How does its fit compare 
to that of the linear model?

Problem 2.3.3 You are now given new data contained within subjective_overfitLong.
csv. This contains data on 1000 replications of the same experiment, where the x values are held 
fixed. Using the least squares fits from the first part of this question, compare the performance of 
the linear regression model with that of the quintic model.

Problem 2.3.4 Which of the two models do you prefer, and why?
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