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	 2	 1   PURPOSE
Once researchers have collected their data, the first step in the analysis process is to summarize 

the observations, both pictorially and numerically. The purpose of this chapter is to examine the  

most commonly employed graphs and statistics for summarizing different types of data. The focus 

is on graphs and statistics used to describe individual variables: univariate graphs and statistics. 

We begin by examining the types of numbers researchers use to record their data. As will be 

seen, a 2 is not necessarily 1 plus 1. Then we introduce the notation system used throughout 

this book. Following that is a presentation of the most common pictorial forms researchers use 

to summarize their data, focusing on the histogram. Next is an examination of the numerical 

descriptions used for summarizing different types of data: mean, median, mode, variance, and 

index of qualitative variation. Throughout the chapter the instructions for the relevant SPSS 

procedures are illustrated.

	 2	 2   INTRODUCTION
Below are the hypothetical quiz scores from two sections of a statistics course. Are you able to scan 

them and summarize the performances of the two sections?

Section 1: 7, 8, 5, 5, 9, 10, 2, 7, 6, 4, 8, 7, 8, 7, 3, 9, 6, 8, 6, 9, 8, 9, 5, 7, 6, 7, 6, 7, 9, 5, 5, 9, 7, 11, 
7, 6, 4, 7, 8, 10

Section 2: 6, 3, 6, 8, 5, 7, 6, 7, 8, 7, 8, 5, 5, 8, 7, 2, 7, 6, 4, 7, 7, 8, 5, 5, 8, 10, 1, 7, 6, 4, 8, 7, 2, 7, 
3, 4, 6, 8, 10, 8

If someone began reading aloud the litany of individual scores, would you have a sense of how 

well the two sections performed or how they performed comparatively? Even with this relatively 

small data set it is virtually impossible. Therefore, the first step in any analysis is to describe and 

summarize the data. A description needs to be more than a listing of all of the observations, 

however. A listing of the quiz scores tells us how each student performed on the quiz, but it tells 

us little of a section’s overall performance or of how the two sections compare. Researchers need 

ways of summarizing the individual observations without distorting the data’s overall structure, 

such as average, and without losing too much information, such as the important details. Some 

descriptive statistics form the basis for testing important assumptions necessary for answering 

inferential questions, such as whether there are any reliable differences between the two sections. 

Reliable in this case means that any observed difference between the two sections is likely not due 

to chance alone.

Any summary comes at a cost. Think of the last time you tried to summarize a novel or a film 

for a friend. While you were attempting to capture the plot you needed to decide which details to 

ignore and which to include. A statistical summary faces the same challenge. With the appropriate 

use of graphs and descriptive statistics the overall quantitative and qualitative character of the 

observations can be captured, with minimal distortion and loss of vital information.
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	 2	 3   NUMERICAL SCALES
Statistics is all about numbers: the manipulation of numbers and their comparison. A single number, 

such as an interest rate, by itself means very little. Furthermore, not all numerical calculations are 

appropriate in all circumstances. Appropriateness depends upon the nature of the numbers used to 

record the observations. The differences in the nature of numbers are often related to four different 

scales of measurement. These scales were first articulated by Stevens (1946) when he defined 

measurement as the assignment of numbers to objects according to rules. Today we describe these 

scales in terms of four properties.

• • • • •

1	 Numbers on a nominal scale merely name 
categories of observations and have no intrinsic 
value.

2	 In addition to providing a name, numbers on 
an ordinal scale have the property of ordering 
categories in terms of ‘more or less’.

3	 In addition to the property of ordering, numbers 
on an interval scale have the property of equal 

size intervals between the adjacent categories 
or numbers.

4	 Numbers on a ratio scale have all three of the 
previous properties – naming, ordering, and 
equal intervals – plus the additional property of 
a true zero.

Nominal scales

The word nominal, which comes from the Latin word nominalis, refers to the property of naming. 

Numbers on a nominal scale name categories of observations that are mutually exclusive. For 

categories to be mutually exclusive no single observation can be a member of more than one. 

The simplest example of mutually exclusive categories is that of heads versus tails. A coin toss 

will either come up heads or tails. The principle is simple. If it is heads, it cannot be tails. Mutual 

exclusiveness means that if the observation is a member of one category in a set of categories, it 

necessarily excludes that observation from being a member of any other category in that set. Mutual 

exclusiveness does not recognize dual citizenship or fusion cuisine. We will discuss the notion of 

mutually exclusive categories in more detail in Chapter 3.

All four scales contain the property of naming. The key is that all the observations will fall 

into one and only one of a scale’s categories. Numbers on a nominal scale are only names and are 

completely arbitrary. If we were researching music preferences, we might assign a ‘1’ to those who 

prefer jazz, a ‘2’ to those who prefer rock, and a ‘3’ to those who prefer classical music. Or we could 

capriciously change our mind and assign a ‘1’ to those who prefer classical music, a ‘2’ to those who 

prefer jazz, and a ‘3’ to those who prefer rock. The 1, 2, and 3 do not refer to amounts or rankings. 

They are only names. Thus, for most purposes, the actual numbers are irrelevant. A ‘–0.0000017’ 

could be assigned to those who prefer jazz, a ‘1.000001’ to those who prefer rock, and a ‘9’ to those 

who prefer classical music. In fact, numbers (names) can be randomly assigned to each category.
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Because the numbers on a nominal scale 

are arbitrary, when analysing such data we 

are not interested in the values assigned to 

the categories, rather, we are interested in 

the number of instances or relative frequencies 

we observe in each category. It would make no sense to add, subtract, multiply, or divide such 

arbitrarily assigned names any more than it would be to subtract Douglas from Alexander. Some 

exceptions to this limitation can be made, as we will see later in the book.

Ordinal scales 

The word ordinal, which comes from the Latin word ordinalis, indicates that in addition to the 

number providing a name, there is an underlying order to the numbers. The property of order relates 

to the comparative relationship of ‘more or less’. ‘More’ and ‘less’ are only qualitative comparisons, 

the quantitative extent of the comparison is unknown and likely changeable. One example of an 

ordinal scale with which many students are familiar is the assigning of numerical grades: 1, 2, 3, 

4, and 5. These numerical grades often indicate failure, barely passing, average, above average, and 

excellent, respectively. The numbers are names, but they also indicate a relation of ‘more or less’ in 

terms of a student’s performance: the larger the number the better the performance. We know that 

a 5 is greater than a 4 and a 4 is greater than a 3, but we do not know if the difference between a 5 

and 4 is the same as the difference between a 4 and 3. Nominally (in name) – pun intended – both 

differences are 1, but are the two 1s quantitatively equal? The values assigned to each category are 

in part arbitrary. We could have just as easily used –2, –1, 0, 1 and 2 for our grading scale, as long 

as the transformation maintains the order of performance, so that the –2 represents failure, the –1 

represents barely passing, and so on.

Furthermore, because there is no assurance that the difference between failure and barely 

passing is equal to the difference between barely passing and average performance, the values 

chosen do not need to be numerically adjacent, as long as they reflect an underlying rank ordering. 

For example, the numbers could be –1, 2, 10, 45, and 100, as long as that order indicates failure, 

barely passing, average, above average, and excellent performance, respectively.

Ordinal number scales allow comparisons of ‘more and less’ to be made. Because the apparent 

equal differences in the numbers are likely quantitatively unequal, however, the numbers on an 

ordinal scale cannot be added, subtracted, multiplied, or divided. We have only a qualitative grasp 

of the relations between the named categories. Similarly to when analysing nominal data, when 

analysing ordinal data the researcher is not particularly interested in the values assigned to the 

categories, but rather in the number of instances observed in each category.

• • • • •

Rankings, such as league tables or standings, 
are examples of ordinal scales. Is the difference 
between the top team and the second placed team 

the same as the difference between the second 
placed team and the third placed team? Perhaps 
it is, but not necessarily. How could we know? If 

The number used for your car’s licence plate and the 
number on a baseball jersey are everyday examples 
of numbers used only as names. We do not produce 
player ‘13’ by adding players ‘8’ and ‘5’.
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there were 20 teams in the league, would the team 
at the top be 5% better than the second placed 
team, or be 95% better than the team at the 
bottom? We may manipulate the numbers, but any 

such conclusions would have little validity. What 
about the rankings of hockey, tennis, or soccer 
players? Are the differences between adjacently 
ranked players all equal?

Interval scales 

The word interval comes from the Latin word intervallum. During the Middle Ages this referred to 

the spaces between the ramparts on castle walls (Figure 2.1), which tended to be of equal width.

In terms of measurement scales, the 

term ‘interval’ refers to the distance 

between numbers. Like the nominal 

and ordinal scales, interval scales name 

mutually exclusive categories. And like 

ordinal scales, numbers on interval scales 

indicate comparative relations of ‘more 

or less’ – the larger the number, the more 

of something. The additional property 

associated with interval scales is that of 

equal intervals between numbers such that 

one difference of 3 (6 − 3) is the same as 

any other difference of 3 (99 − 96). In this 

case, a rose is always a rose.

The property of equal intervals allows 

for addition and subtraction as well as 

relevant comparisons, but it allows for only some forms of multiplication. A common example 

of an interval scale with which we are all familiar is temperature. The difference between 

−30° and 0° Celsius is equal to the difference between 0° and +30° Celsius. We need to be 

careful, however. If the temperature yesterday was 10°C and today it is 20°C, it does not mean 

that today it is twice as warm as it was yesterday: 20/10 = 2. To illustrate this, convert the 

temperatures from Celsius to Fahrenheit: F = C(9/5) + 32. The two temperatures become 50°F 

yesterday and 68°F today. It no longer appears to be twice as warm today as it was yesterday: 

68/50 = 1.36.

personality and iq

Some say that true interval scales in the 
behavioural and biological sciences are rare. 
Consequently, care must be taken. Researchers 
typically treat scores on personality and IQ tests 

as if they were interval in nature. Such scores 
are not the number of items answered correctly 
or answered in a particular manner. Performance 
on such tests is reported as standardized scores, 

(Continued)

Figure 2.1
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and it is unlikely that the intervals are equal. For 
example, the difference between an IQ of 95 and 
an IQ of 100 is unlikely to represent the same 
difference in intellectual ability as the difference 
between an IQ of 120 and 125. Many would argue 
that scores on personality and IQ tests are best 
considered ordinal in nature. Treating ordinal 
scores as interval in nature will result in distortions 
when inappropriate manipulations are performed. 

How much distortion will result? It depends, if the 
intervals between consecutive scores vary greatly, 
there will be considerable distortion. If the intervals 
vary only slightly, then the distortion will be 
minimal. It is common, particularly in educational 
research, to convert percentile score, which are 
ordinal in nature, into something called normal 
curve equivalent scores, which will be presented 
in Chapter 3.

Ratio scales

The word ratio comes from the Latin verb reri, 

refers to think, reckon, or calculate. A ratio 

scale has all three of the previously mentioned 

properties – naming, ordering, and equal 

intervals – plus the additional property of 

a true zero. It is the presence of a true zero 

that allows meaningful ratios to be calculated. 

Unlike the case with interval scales, when 

there is a true zero, the units of measurement 

can be converted, but any computed ratios 

will be equivalent. Time is a good example. 

The ratio of 2 minutes to 1 minute is 

2/1 = 2. If we convert the minutes into 

seconds the ratio is unchanged: 120/60 = 2.  

In experimental areas of psychology, because 

they are ratio in nature, reaction time (RT) or 

latency and accuracy have been the two most 

common dependent variables. RT is the time 

it takes someone to complete a task, be it simple or complex. Accuracy is the number of correct 

responses observed over a period of time. Both have true zeros.

Some researchers have treated personality, IQ, and social surveys as if they represented 

ratio scales. Treating these measures as such will result in distortions and possible erroneous 

conclusions when some statistical analyses are performed. How much distortion? Again, it 

depends. If the data have little resemblance 

to a ratio scale, there will be considerable  

distortion in any calculation. The closer 

the data approximate a ratio scale, the less 

the distortion.

Although intervals may be equal within a scale, 
they may not be equal across scales. Also notice 
that the zero on the Celsius scales is not a zero on 
the Fahrenheit scale.

Figure 2.2

The time it takes runners to complete the 100 
metre dash is one obvious example of a ratio 
scale. Scores (times) can be converted into ratios. 
Someone can be twice as fast as someone else.
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review question

With which of the four scales of measurement do you associate the following measures? Using the four 
properties, explain why.

1	 Your year of birth.
2	 Your marks in secondary school.
3	 Your shoe size and width.
4	 The number of the row in which you sat during the last lecture (from front to back).
5	 Your income last month.

 Web Link 2.1 for a discussion of possible responses.

As stated at the outset, this chapter surveys the graphs and statistics that researchers use to 

summarize and describe individual variables: univariate statistics and graphs. The term ‘data’ usually 

refers to the set of individual observations the researcher collects with respect to the dependent or 

criterion variable. [Insert Page cross reference for a review of the distinction between dependent and 

criterion variables in the previous chapter].

review question

What is the difference between an experiment and a quasi-experiment?

 Web Link 2.2 for an answer to the review question.

Other ways of categorizing data

As mentioned in the previous chapter, although there are four scales of measurement, researchers 

discuss data as being one of two types: measurement or categorical. Measurement data are sometimes 

called quantitative data, and categorical data are sometimes called qualitative or frequency data. 

With respect to measurement data, each of a researcher’s observations can result in a unique value. 

Measurement data are associated with interval and ratio scales and they can be either continuous 

or discrete. Reaction time (RT) is a continuous variable. It is continuous in the sense that there are 

an infinite number of values between any two RTs. There are an infinite number of units of time 

between 1 and 2 seconds just as there are an infinite number of units between 1 and 2 milliseconds. 

The number of items correctly answered on a multiple-choice examination is an example of a 

discrete variable. It is discrete because there are adjacent values which have no values between 

them. On a true-or-false test, a student answers either 21 or 22 items correctly. There are no scores 

of 21.5.
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Categorical data, usually associated with 

nominal and ordinal scales, by their nature 

are discrete. When examining frequency 

data the focus is not on the particular values 

(names) assigned to the categories of the observations, but rather on the number of observations 

(frequencies) observed in each category. As we will see, there are different descriptive statistics 

associated with these different types of data.

	 2	 3   NOTATION
At this point it is necessary to begin introducing the notation system used throughout this book. 

When computing statistics we often carry out simple computations iteratively. That is, we repeat 

a procedural step or computation. Often a computation is performed on all observations. Rather 

than write out each instance, we have a system for notating the process. The Greek symbol ∑ 

(Sigma) is used for this purpose. Assume we have a data set (y) of five observations: 2, 1, 4, 5, and 3. 

If we wish to obtain the total of the y values, it could be written out ‘add up all of the observations’: 

2 + 1 + 4 + 5 + 3 = 15. Or we can simply express this as ∑y = 15. Latin letters, usually y, are used to 

indicate a variable. ∑y indicates the sum of the y values. ∑(y – C) instructs us to subtract a constant 

from each of the y values and sum the differences: (2 − C) + (1 − C) + (4 − C) + (5 − C) + (3 − C). 

These forms of summation notation, as well as elaborations on them, will be used throughout this 

book. It should be noted that

yi
i

n

=
∑

1

is the more formal expression of ∑y, where i indicates where to begin the summing. Unless stated 

otherwise, begin with the first observation. n is the total number of observations and, thus, the last 

observation in the set. With each iteration, i is incremented by one. Because summations almost 

always involve all observations in a data set or in a subset, the notation is simplified by dropping 

the i and the n. Notational variations will be introduced as necessary.

 Web Link 2.3 for a more comprehensive review of summation notation and related rules.

In addition to summation notation, there is a need to clarify how letters will be used to symbol-

ize variables and statistics. Figure 2.3 summarizes how some of the Latin and Greek letters are used 

in the text.

For example, Latin letters are used to indicate variables. The letter y usually is used for 

dependent or criterion variables and the letter x for independent or predictor variables. Most 

of the letters in Figure 2.3 are introduced in this chapter, the others appear in subsequent 

Continuous variables, like sliding boards, are 
smooth from top to bottom. Discrete variables 
have a fixed number of steps, like staircases.

02_BORS_CH_02.indd   30 9/28/2017   6:11:53 PM



Histograms 31

chapters. Statistics are said to be descriptive when they are used to merely describe a set of 

observations. Statistics are said to be inferential when they are used to make inferences about 

populations and their parameters or to test hypotheses. The reporting of all research results 

begins with the presentation of descriptive statistics.

Type of letter Function Data type

Roman

y Dependent variable Measurement

or Criterion

x Independent variable Measurement

or Predictor1

Y , S, S2, r Sample descriptive statistics Measurement

VR, IQV Sample descriptive statistics Categorical

t, F Inferential test statistic Measurement

Greek

µ, σ, σ2, ρ Population parameters Measurement

φ Sample descriptive statistic Categorical

χ2, λ, τ Inferential test statistics Categorical

Figure 2.3  Some letters used as symbols

	 2	 4   HISTOGRAMS
Entering data

Although there are many ways to pictorially summarize data, the histogram is the most common 

univariate graph. One reason for its wide use is that it provides a visual summary of a variable 

with a minimal loss of information. Furthermore, the histogram allows for easy identification of 

any anomalies that may need to be addressed. As we will see, anomalies include such things as a 

problematic shape of the distribution of the observations or an observation that is considerably 

greater or smaller than all others. Problematic shapes and extreme scores will restrict the type of 

statistical analysis that may appropriately be applied. Some of the ways to correct these anomalies 

are discussed at points throughout the book.

Histograms can be appropriately applied to most forms of data, including measurement, 

categorical, discrete, and continuous data. Histograms are often employed to summarize the 
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Figure 2.4

dependent variable in experimental studies and to depict both criterion and predictor variables in 

observational research. Let us examine the data given in Section 2.2 above.

Begin by entering the data into the SPSS Data Editor. Go to this SPSS link at https://study.

sagepub.com/bors . Once SPSS opens you will see a window labelled IBM SPSS STATISTICS 

(Figure 2.4). In the small white box below the label you will see an option called New Dataset. 

Select that option and then click on the OK button at the bottom right of the window.

A new window labelled IBM SPSS Statistics Data Editor appears with a row of menu tabs 

and a matrix of empty boxes (Figure 2.5). The columns are labelled var for ‘variable’. The rows 

are labelled 1−39 to begin with. The rows usually represent subjects and the numbers in the 

first column often serve as subject numbers.

At the bottom left of the screen there are two tabs: Data View and Variable View. We are 

currently in the Data View window. By clicking the Variable View tab we can switch to the 

Variable View window and name our variable and define our variable type. When the window 

opens, move the cursor to the Name cell in the first row and type our variable’s name. Let us 

use section1 as the name (Figure 2.6). Notice that when you hit return other cells in the row 
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Figure 2.5

Figure 2.6

are automatically filled in. Ensure that the variable is listed as Numeric under the Type head-

ing and as Scale under Measure heading. Although the number of items correct on the quiz 

is an example of a ratio scale, SPSS does not differentiate ratio and interval scales. The term 

Scale under the heading Type is used for either ratio or interval data. For now we will use the 

other default settings.

Because we are only exploring one variable, click the Data View tab and return to the 

Data Editor window (Figure 2.7). Move the cursor to the cell immediately under the variable 

labelled section1 and enter the first score. After entering a 7 in the first row either arrow down 

or hit the enter key to move to the second row. Continue doing so until all 40 observations for 

section1 are entered in the first column of the matrix.

Once the data are entered, we can construct a frequency table. From the menu row in the 

Data Editor click Analyze, scroll down to the Descriptive Statistics option and then over to 

Frequencies. When the Frequencies window appears, highlight and move (using the arrow 

between the boxes) section1 over to the Variable(s) box (Figure 2.8). Ensure the Display fre-

quency table box in the bottom left corner is checked. Then click OK. The Statistics Viewer or 

output window will appear (Figure 2.9).

02_BORS_CH_02.indd   33 9/28/2017   6:11:54 PM



DESCRIPTIVE STATISTICS34

Figure 2.8

Figure 2.7

The small box at the top of the window reports the number of observations analysed (N) and 

the number of subjects with missing data. We have 40 observations (subjects) and no missing 

data. Below that in the output window is a table with five columns. The first column lists the 

categories of the observations; we had scores ranging from 2 to 11. The second column indicates 
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the frequency or the number of observations 

found in each category. The third column reports 

the percentage of the observations associated with 

each score or category. We will ignore the fourth 

column for now. The fifth column provides the 

percentage as it accumulates from the lowest score 

to the highest score.

Although a frequency table provides important 

summary information, such as the lowest and 

highest scores as well as the frequencies for each 

of the scores, researchers in many areas often 

prefer to view frequencies in pictorial form: a 

histogram.

To produce a frequency histogram, return to 

the Frequencies window and select the Charts 

tab. Click the Histogram button (Figure 2.10) 

Figure 2.9

Figure 2.10
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Figure 2.11

and then Continue. When you return to 

the Frequencies window, click OK.

In addition to the previous output, 

you now will find a frequency histogram 

(Figure 2.11). On the horizontal axis, or 

x-axis, the observed scores or categories 

are listed in ascending order. The vertical 

or y-axis represents the frequency or 

number of observations. For example, 

we can see from the histogram that there 

were two scores of 4 and five scores of 

5. Summing the frequency of all of the 

categories gives us the total number of 

observations. Most of the information 

from the frequency table is contained in 

the frequency histogram. The percentages 

and cumulative percentages would need 

to be calculated, however. SPSS does 

provide histograms with that information. 

As an example, we will construct a relative 

frequency histogram. For that we need to 

switch to a different option in the Data 

Editor window.

In the Data Editor window we move over from Analyze to the Graphs option and scroll 

down and select Chart Builder. For our purposes, when the Chart Builder window appears 

(Figure 2.12) click OK.

Two windows will simultaneously appear: a second Chart Builder window and an 

Element Properties window (Figure 2.13). From the bottom left of the Chart Builder win-

dow select the Histogram option and then drag the leftmost of the four examples (Simple 

Histogram) into the large empty rectangular box. Next select and drag the variable name 

(section1) from the Variables box into the X-Axis field in the box to the right. Next go back 

into the Element Properties window in the Chart Builder and click the little down arrow 

that appears across from Histogram under Statistic. Choose the Histogram Percent option 

and at the bottom of the window click Apply. Move over to the Chart Builder window and 

click OK.

An alternative version of the frequency histogram appears in the output window: a relative 

frequency histogram. These two histograms look identical. There is only one difference. Notice 

that the label of the y-axis has been changed from Frequency to Frequency Percent. The current 

histogram provides the percentage of the total number of observations represented by each 

category on the x-axis. With a relative frequency histogram, an important piece of information 
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Figure 2.12

Figure 2.13
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is lost. If I tell you that 20% of the people surveyed preferred coffee over tea, you have no way of 

knowing, unless I tell you, how many people were surveyed. I may have surveyed only 10 people 

or I may have surveyed 10,000.

• • • • •

Remember that an important factor when we evaluate 
the reliability of numerical information is sample 
size, or the number of observations upon which a 
summary is based. My data may indicate that 50% 
of Americans surveyed earned over $5 million a year. 
My summary, however, may have been based on only 
two observations: a professional football player and 
myself. Thus, when evaluating percentages, be they 

in a relative frequency histogram or merely reported 
in a news article, it is important to know the total 
number of observations upon which the percentages 
were calculated. Of course factors other than sample 
size are important. For example, an income survey 
may be conducted in the New York Yankees locker 
room or it may be conducted by randomly selecting 
income tax statements.

The above procedures for constructing a histogram work well when there are a limited number 

of observed values or categories on the x-axis. In the current set of discrete data there are only 

ten different observed values: 2 to 11. Thus there are ten categories on the x-axis with a number 

of observations in several of the categories. But what if there were considerably more categories 

(e.g., exam scores ranging from 23 to 99), with rarely more than one observation in any category? 

A glance at the hypothetical data in the frequency table in Figure 2.14 illustrates that a histogram 

with all observed values represented on the x-axis is only marginally more informative than 

merely listing the individual scores. Moreover, when the dependent variable is continuous in 

nature, such a limitation is always the case. This limitation is resolved by grouping the data into 

categories or bins.

When the data in the frequency table are categorized into ten bins and the bins are used 

to construct the histogram in Figure 2.15, the data are found to be more than a litany of 

random individual values. A pattern emerges that was not originally apparent. Like the earlier 

histogram when the values ranged from 2 to 11, the bulk of the observations cluster in the 

middle of the range, with fewer and fewer observations as we move towards the highest and 

the lowest scores.

Rules for constructing bins

It is clear that binning data can be quite helpful when pictorially summarizing data where there are 

either a large number of discrete scores or the scores are continuous in nature. Binning must follow 

certain rules or the resulting histogram can be misleading, however.
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Figure 2.14

1	 The bins should be of equal width. 
In the above example there are ten 
bins each with a width of eight. If 
the bins were of unequal width, 
the relative frequency of certain 
categories on the x-axis may be 
exaggerated and misinterpreted. 
There are justifiable exceptions. 
There may be instances where the 
bins are unequal because of the 
nature of the scale of interest. For 
example, marks in a course may 
be based on a final examination 
with scores ranging from 23 to 
99. For the purpose of examining 
the students’ performance, bins 
should be kept equal. If we are 
assigning grades 1, 2, 3, 4, and 
5 to represent failure, barely 
passing, average performance, 
above average, and excellent, with 
scores 0–49, 50–59, 60–69, 70–79 
and 80–99, respectively, then the 
bins for depicting the data will 
appear unequal: the first and last 
category are wider than the others. 
In this second case, for analytical 
purposes, we are changing the 
measurement scale from ratio  
to ordinal.

2	 The number of bins a researcher 
chooses can make a big difference 
to how the data appear. When 
the bulk of the observations are 
clustered in the middle of the 
observed values, with fewer and 
fewer observations further towards the highest and lowest scores, the number of bins makes little 
difference to the nature of the histogram. When, however, the distribution of scores diverges from 
that pattern, as will be seen, a change in the number of bins can make a great difference to the 
shape of the histogram.

3	 Additionally, the appropriate number of bins is also related to sample size. The more observations upon 
which the histogram is based, the more categories a researcher is free to employ. If you have relatively 
too few observations for the number of bins, the observed shape of the histogram will be less reliable. If 
there are 20 observations and ten bins are used to visually summarize the data, a change in one or two 
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Figure 2.16

Descriptive statistics Measurement Data

Measures of central 
tendency

Mean The arithmetic average of the observations

Median The value that divides the rank-ordered observations in half

Mode The most common value of the observations among the 
data

Measures of spread

Range The difference between the largest and the smallest value 
in the data

IQR The range of the middle 50% of the rank-ordered 
observations

Variance The average squared difference between each observation 
and the mean of the observations

Standard deviation The square root of the variance

	 of the observations or a change in the 
number of bins may drastically change 
the shape of the histogram.

 Web Link 2.4 for SPSS instruction and 

practice with binning.

Other forms of graphing and pictori-

ally displaying data are described later on 

in this book, as needed.

Descriptive statistics

Descriptive statistics are another way to 

summarize the researcher’s observations or 

data. Where graphs pictorially display the 

data, descriptive statistics provide numerical 

summaries. These numerical summaries 

are often utilized in further analyses of 

the data. We first examine the descriptive 

statistics used with measurement data; 

these are summarized in Figure 2.16.
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	 2	 5   MEASURES OF CENTRAL TENDENCY: MEASUREMENT DATA
Mean

The most basic statistics are those of central tendency or the values that represent the centre of 

the distribution of the observed scores. These statistics are commonly referred to as averages. 

These statistics can represent a variable’s expected values. The most common measure of central 

tendency is the mean. The mean is what most people think of when they hear the word average. 

The mean is calculated by summing all of the observations and dividing this sum by the number 

of observations. We can write this as

y
y

n
= ∑ ,

where y  is the mean of y, ∑y is the sum of the observations, and n is the number of observations.

For example, assume the following 19 scores are from a ten-item multiple-choice quiz: 

4, 8, 5, 7, 1, 6, 2, 5, 3, 7, 5, 5, 4, 9, 4, 5, 3, 6, 6.

To obtain the mean the quiz scores are summed and divided by the number of scores: 

y
y

n
= ∑ = =

95
19

5 .

Thus, the mean of the 19 scores is 5. The mean cuts the total value in half. Half of the value will be 

below the mean score of 5 and half will be above it. This does not necessarily mean that half of 

the observations will be below the mean and half will be above it. That is the function of our next 

measure of central tendency.

Return to the Data Editor window with the variable section1 and select Analyze from 

the menu bar. From the drop-down menu, select Descriptive Statistics, move to the next 

drop-down menu and click Frequencies. Highlight the variable section1 and click the arrow 

moving section1 to the Variable(s) box (Figure 2.17). Select the button on the right labelled 

Statistics. In the menu that pops up (Figure 2.18) click on the Mean, Median, and Mode 

boxes and then on the Continue button at the bottom. When you return to the previous 

menu, click OK.

In the output window labelled Statistics Viewer the small upper box (Figue 2.19) lists several 

things: N Valid (40, which is the number of observations), N Missing (0, how many subjects are 

missing a score), mean, median, and mode. We see that the mean ( y ) is 6.9250, the median is 

7.0000, and the mode is 7.00.

Means are often referred to as descriptive statistics. Once the mean is used for any purpose 

other than describing the particular observations on which it is based, it becomes an inferential 

statistic. That is, the mean is being used to infer something beyond the sample, even if it is simply 

considered an estimate of the population mean from which the sample was drawn. Although 
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first and foremost descriptive, means and other ‘descriptive’ statistics are also used inferentially for 

comparative or predictive purposes.

The related population parameter, the mean of the population, is expressed as

µ = ∑
Y

N
,

where μ (pronounced ‘myu’) is the true mean of the population from which samples may be drawn. 

∑Y is the sum of all the observations in the population, and N is the total number of observations in 

the population. μ indicates the true mean of the population, regardless of whether the population 

is finite or infinite.

Figure 2.17

Median

The median is the value which divides the observations in half after they have been arranged in 

order from the smallest to the largest. Fifty per cent of the scores – not 50% of the value – will be 

below the median and 50% of the scores will be above the median. To find the median of the scores 

from the ten-item multiple-choice quiz we looked at earlier, let us begin by arranging the scores in 

ascending order:

1, 2, 3, 3, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 7, 7, 8, 9.

Which value divides these scores in half? Suppose there are n scores. The median score is the 

one in the 1
2

1( )n + th position.
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Figure 2.18

Figure 2.19

For a data set with an odd number of 

observations, like the one above where n = 19, the 

position of the median is 
1
2

1
1
2

19 1 10( ) ( )n + = + = .  

The answer, 10, represents the 10th position, not 

the value of the median. As can be seen in the 

above rank ordering, the value associated with the 

10th position is 5. Thus, the median is 5.

For a data set with an even number of 

observations, such as

1, 2, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 6, 7, 7,  
8, 8, 9, 10, 

there is one additional step. We now have n  =  20, so 
1
2

1 10 5( ) .n + = . Again, the answer, 10.5, 

represents the 10.5th position, not the value of the median. But the 10.5th position falls between 
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the 10th and the 11th scores, between a 5 and a 6.  

In such cases the average of the two values is taken:  

(5 + 6)/2 = 5.5. Thus, in this case, the median is 5.5. 

The median is the point at which half of the 

observations will fall below and half will fall above. 

This is a different sense of the term ‘average’ from 

that of the mean. Where the mean is based on the 

total value of the observations, the median is based on 

the total number of observations. For the calculation 

of the median, only the one value or the two values 

in the middle are important. For the mean, all values 

play a role. In technical terms a statistic that uses 

all of the sample’s observations is called sufficient 

(Howell, 2002).

Looking at the previous SPSS output window 

(Figure 2.19), we find that the median score associated 

with the variable section1 is 7.0. In this data set the 

median is very close to the mean (6.9250). You can 

gain some more SPSS experience and check the accuracy of this median by returning to the 

Data Editor window, selecting the Data option from the menu row, and then Sort Cases. 

When the Sort Cases window appears, select and move the variable section1 from the left-

hand box over to the Sort by box (Figure 2.20). Select the descending Sort Order option and 

then click OK.

Notice that the data in the Data Editor have been quickly sorted, beginning with 11 and 

ending with 2. A question remains, however. Which of the 7s in the data set is the median?

Remember, the median of a data set will be in position. 
1
2

1( )n +  In the case of the variable 

section1 this will be position. 41
2

20 5= .  The 20.5th position, however, falls between the 20th 

and the 21st scores, between a 7 and a 7. When we take the average of the two values, we get 

(7 + 7)/2 = 7. In effect, the median value of 7 is not one of the actually observed 7s found in 

the variable section1, but an invisible value found between two of the observed 7s. When we 

count the number of observations above and below that invisible 7, we find 20 observations 

below it and 20 above it.

Mode

The mode provides yet another sense of the term ‘average’. When the numbers are discrete, the 

simplest definition of the mode is that it is the most frequent value in the data set. Let us again 

using the above rank-ordered data from the hypothetical quiz (n = 19): 

1, 2, 3, 3, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 7, 7, 8, 9. 

Figure 2.20
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We find one 1, one 2, two 3s, three 4s, five 

5s, three 6s, two 7s, one 8, and one 9. The 

most frequent value in the data is 5. Thus, 

the mode is 5.

Returning to the SPSS output window for variable section1, the Statistics box indicates that the 

mode of those 40 observations is 7.0. This is identical to the median and very close to the mean for 

this data set. To the chagrin of researchers, this is not always the case.

The computation of the mode is not always straightforward. When there are a great many 

different values and perhaps only one or two observations with the same value it makes 

little sense to speak of the mode. An obvious example of this could be the marks on the final 

examination in a biochemistry course (let us give statistics a rest). There may be 50 students 

in the class and no two with the same mark on the examination. In such cases, as when 

constructing a frequency histogram, it is common to cluster or bin the marks before calculating 

a mode. We may wish to use bins with a width of 20, for example, where we look at the number 

of students who scored between 81 and 100, between 61 and 80, between 41 and 60, between 21 

and 40, and between 0 and 20. If we found 7 students scoring between 81 and 100, 17 students 

between 61 and 80, 14 students between 41 and 60, 10 students between 21 and 40, and 2 

students scoring between 0 and 20, then 61–80 could be identified as the modal category. Notice 

the mode is a bin and not an individual score. The rules and limitations regarding binning 

presented earlier also apply here.

Whereas a sample can have only one mean and one median, a sample may have two or more 

modes. Not all variables are unimodal. Look at the following two samples of data that have been 

rank-ordered to make examination easier.

Sample I: 1, 2, 2, 3, 3, 3, 3, 4, 5, 6, 7, 7, 8, 8, 8, 8, 9, 9, 10.

Sample II: 1, 2, 2, 3, 3, 3, 3, 4, 5, 6, 7, 7, 8, 8, 8, 8, 8, 9, 10.

If you calculate the mean for each of the two samples, you find them to be 5.58 and 5.53, 

respectively. The two corresponding medians are 6.00 and 6.00. When Sample I is examined, two 

values or scores that are equally the most common are found: 3 and 8. Such a distribution of 

observations is deemed bimodal. When Sample II is inspected, 8 is found to be the most common 

value, but just by one observation. For most purposes, even though 8 is the most common score in 

Sample II, this distribution of observations also is deemed bimodal. The reason for the designation 

is that the frequencies of the two scores (3 and 8) stand out from the others. Of course there can 

be more than two modes. For most purposes researchers are concerned with knowing that the 

distribution of their data is unimodal.

After examining the two sets of observations again you may begin to understand why 

researchers are often hoping that the data are unimodal. Are the means of these two samples 

(5.58 and 5.53) as meaningful (pun intended) as the mean of the section1 data (7), which was 

unimodal? In the case of bimodal data, do means and medians reflect average or expected scores? 

Clearly they do not. Should we randomly select an observation from Sample I or II, we expect 

Section 1: 7, 8, 5, 5, 9, 10, 2, 7, 6, 4, 8, 7, 8, 7, 3, 
9, 6, 8, 6, 9, 8, 9, 5, 7, 6, 7, 6, 7, 9, 5, 5, 9, 7, 11, 
7, 6, 4, 7, 8, 10.
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it to be either above or below the centre. Excuse this coarse but instructive example: after 

calculating the mean of a large sample of young adults we find that the average human being 

has one testicle.

The mean and the median are the measures of central tendency most often employed to describe 

the average or the centre of a set of observations. As seen above, all three (mean, median, and mode) 

can be the same value. This occurs only in one particular circumstance: when the observations are 

unimodal and they are distributed symmetrically around the mode. In terms of measurement data, 

the mode is the least applied measure of central tendency. The mode is most useful when denoting 

the most frequent observation among a small set of options, particularly when summarizing 

nominal data. For example, when describing voter preferences, political scientists may wish to 

identify the most popular party. The expected choice of political party is not some sort of middle 

choice. Remember, numbers that are assigned to the political parties are nominal in nature and 

thus not amenable to calculating a mean or median.

Mean versus median

The mean and the median both describe data and form the basis for further inferential analyses. 

As will be seen later, the mean is typically employed when researchers analyse their data with 

parametric statistics, whereas the median is often employed when nonparametric statistics are used. 

At this point let us simply say that nonparametric statistical procedures do not use sample statistics, 

such as the mean ( y ), to estimate corresponding population parameters (μ). This is an important 

distinction to which we will return in Parts II and III of the book. Here the groundwork is laid, 

however, through an exploration of how the mean and the median are differentially affected by 

small modifications to a data set.

To examine how the mean and the median react differently to small modifications in a data set, 

open a new SPSS Data Editor window and enter the set of 19 scores from the hypothetical ten-item 

multiple-choice quiz which we first encountered earlier: 

1, 2, 3, 3, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 7, 7, 8, 9. 

Run the Descriptive Statistics (mean, median, and mode) on these 19 observations four times. 

Begin by running the program with the above data as given, then three more times: first, after 

changing the highest score, the 9, to a 10; next, after changing the 9 to a 20; and finally, after 

changing the 9 to 100. Notice that across the four analyses the median is constant. The value in 

the middle, 5, remains the value in the middle, regardless of the increases to the highest value. 

Rounding to the nearest two decimal places, however, the mean increases from 5.00 to 5.05, 

then to 5.58, and finally to 9.80. In the last case, the mean of the 19 observations is now greater 

than the second highest value in the data set. Note that there are also no changes in the mode. 

A statistic insensitive to outliers is said to be resistant. While the median and mode are resistant, 

the mean is not.
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challenge question

As you have seen, the mean of a data set may change simply by changing a single value in the set. 
Here are several challenge questions.

1	 What is the minimum number of values you would need to change the median?
2	 How many values can you change without changing the median?
3	 How many values can you change without changing the mean?
4	 Can you change the value of only one score without changing the mean?

You might wish to return to the SPSS data set and play around with changing some of the values.

 Web Link 2.5 for an answer to the challenge questions.

There are other differences between the mean and the median. An important one mentioned 

here involves minimizing the total distance the individual observations are from a single value 

(the absolute deviations) versus minimizing the total squared distance the individual observations 

are from a single value (the squared deviations). The value that minimizes the absolute value of 

the deviations is the median. For example, if a data set is comprised of 1, 2, and 9, the median 

would be 2. If we subtract 2 from our three scores – which we will call deviations or errors – we 

get the absolute values of, 1 , 0  and. 7  We have ∑(y – median) = 8. If any value other than the 

median is used, the total absolute distance will be greater than 8. This includes using the mean of 

our three scores:

y
y

n
= ∑ = =

12
3

4 .

If the mean of 4 is subtracted from the three scores the absolute distances are, 3 , 2  and  

5 , and. y y−( )∑ = 10  If you were allowed to use only one value to guess all of the values hidden in 

a hat, and you wished to minimize the total absolute value of your error (total absolute distance), 

then you should choose the median of the values. If, however, you wish to minimize the squared 

deviations or squared total errors using a single value, then you will want to know the mean of the 

values in the hat. Analysing the three scores of 1, 2, and 9, we find the following. Recall the mean 

is 4. Then

( )y y−∑ = −( ) + −( ) + −( ) =2 2 2 21 4 2 4 9 4 38 .

When any value other than their mean is used the total of the squared errors will be greater than 

38. This includes using the median of the three scores.

( )y −∑ = =median (1 2) + (2 2) + (9 2) 502 2 22 − − − .
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These differences between the mean and median are important to note. They will become 

important for tests of statistical significance and the problem of assumptions.

review question

When will it make no difference whether we use the mean or the median for calculating the total 
absolute difference and the total squared difference?

 Web Link 2.6 for an answer to the review question.

• • • • •

Note that the mean and the median may be defined 
as being the expected values, and the three scores 
(1, 2, and 9) described as the observed values. This 

is the simplest use of these terms (expected and 
observed) introduced in Chapter 1.

Composite mean: mean of means

To extend the application of the notation and symbol systems found throughout this book, the 

concept of composite mean is explored. A composite mean is defined as the overall mean or grand 

mean of all observations across several groups or samples. For example, there may be three sections 

of students in your statistics course. Imagine you are told each section’s mean score on a quiz and 

you wish to know the overall or grand mean (GM) of all students across all three sections. There 

are two circumstances in which the solution is simple. First, if we have the marks from all of the 

individual students, we can simply sum them – ignoring sections – and divide by the total number 

of students. This can be written as 

GM =
Σ y

N
ij ,

where GM represents the grand mean across all sections or samples, and Yij represents the ith sub-

ject in the jth section or sample. In simple terms, Σyij  is the sum of the marks of all students across 

all sections of the course. N represents the total number of students across all sections, and lower-

case nj represents the number of students in a given section. Thus, N = ∑nj. The notation denotes 

summing all nj scores across all sections or subsamples.

Second, if there is an equal number of students in each section of the course, we can sum 

the section means and divide them by the number of sections. This is the simple mean of the 

means, written 

GM =
Σ y

K
j ,
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where K is the number of sections, and yj  

represents the mean of the jth section. We 

can write Σ y
j  more formally as yjj

k
=∑ 1 .

A problem arises when the individual 

observations are not available and the section 

sizes are unequal. When the n are unequal, 

it is highly unlikely that the GM is a simple 

mean of the means. For example, sample sizes 

in Figure 2.21 vary greatly.

The first three columns are the scores 

in three samples. The fourth column is all 

scores from the three samples: ∑yij . The 

means for the three samples are 2, 4, and 3, 

respectively. The simple mean of the means is 

GM y kj= ∑( ) = 3 . But notice that the simple 

mean of the means is not the true mean of all 

13 scores. The mean of all scores across the 

three samples is actually 3.3077. The problem 

is not insurmountable, however. Remember 

what a mean is: the total value divided by the 

number of observations.

With the sample means and the number of 

observations for each sample, it is possible to 

reconstruct GM y Nij= ∑( ) . The numerator, 

Σ Σ Σ Σ Σy y y y yik i i ij ik( . . . . . . ),1 2+ + + + +  

represents the total value of the observations 

in the last groups . Because K is the total number of groups, it is also the number associated 

with the last group. Next, recall that y y n= ∑( ) . Thus, with a little algebra, y ny=∑ . That 

is, the total of the marks of the students in any section can be recovered by multiplying the 

number of students in the section by the mean of the section. The result of completing this 

for all sections and summing the products is the total of all of the individual marks across  

all sections: n y yj j ij∑ = ∑ . The individual marks are not recoverable, but the total is. Summing 

the number of observations across all sections provides the total number of observations:  

N = ∑nj . Thus,

GM
n yj

= =
∑

∑

∑j

j

ij

n

y

N
.

For our example,

2 3 4 7 3 3
3 7 3

43
13

3 3077
×( ) + ×( ) + ×( )

+ +
= = . .

Enter the data from Figure 2.21 into SPSS using 
the four columns as variables and obtain the 
means for the four variables for practice and for 
comparison with the subsequent calculations in 
the text. Note: there may be small differences due 
to rounding.

Figure 2.21

Sample 1 Sample 2 Sample 3 All scores

1 1 2 1

2 2 3 2

3 3 4 3

4 1

5 2

6 3

7 4

5

6
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challenge question

When the sample n are unequal, is it ever possible to calculate the grand mean by summing the means 
of the subgroups and dividing by the number of groups? If it is never possible for this to happen, then 
why not? If it is possible, when is it?

 Web Link 2.7 for an answer to the challenge question.

	 2	 6   MEASURES OF SPREAD: MEASUREMENT DATA
This section covers another crucial dimension of descriptive statistics: measures of spread. Locating 

the centre of a set of observations is important when summarizing data, but the centre alone is 

insufficient. How much of a description can the mean alone provide? For example, if an instructor 

informs her class that the mean score on an examination was 75, this provides some information 

about how well the class performed. But knowing the centre says nothing of the spread of the 

scores. If the instructor informs the class that the marks range from 70 to 80, this gives a very 

different impression than if the instructor says the marks range from 30 to 90. In this section 

various measures of spread (range, inter-quartile range, variance, and standard deviation) along 

with their uses and limitations are surveyed.

Either calculate or enter into a new SPSS Data Editor window the following two variables.

Var1: 0, 2, 4, 4, 5, 5, 5, 6, 6, 8, 10.

Var2: 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6.

They can be labelled var1 and var2.

As earlier, select Analyze from the Data Editor menu in SPSS. Then select Descriptive 

Statistics and then Frequencies. From the Statistics menu calculate the mean, median, and 

mode of both var1 and var2.

Notice that both groups have a mean of 5.0, a median of 5.0, and a mode of 5.0. A visual 

examination of Var1 and Var2 reveals a clear difference in the two sets of observations. The two 

groups of scores are considerably different in terms of their spread.

Range and inter-quartile range

In Var1 the observations range from 0 to 10. In Var2 the observations range from 4 to 6. The range 

is defined as the difference between the highest and the lowest values in a set of observations. For 

Var1, range = 10 – 0 = 10. For Var2, range = 6 – 4 = 2. Thus, although the two groups of observations 

have the same means, medians, and modes, they differ considerably in their range. Combining 

the mean and the range offers a more informative summary description of the two variables than 

either alone does. The measure of range has its utility, but it also has limitations. Consider the 

following three groups of data:
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var1: 2, 4, 5, 5, 6, 6, 6, 7, 7, 7, 7, 7, 7, 8, 

8, 8, 9, 9, 10, 12.

var2: 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 10, 10, 11, 

11, 12, 12, 12, 12, 12, 12.

var3: 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 

7, 7, 7, 7, 7, 16.

The observations are rank-ordered for ease 

of visual examination. If you enter the 

20 observations of these three variables 

into SPSS and examine the descriptive 

statistics, you will discover that all three 

variables have a mean and median of 7.0 

and a range of 10. But the shapes of the 

distributions of the observations about 

their means and across their range differ 

greatly. This is one reason why pictorial 

summaries, particularly histograms, of 

data are always valuable. Look at the 

difference in these three variables, all with 

the same mean, median, and range.

The observations in var1 (Figure 2.22) 

are clustered near the mean, median, and 

mode, and are symmetrically spread out 

around the central value. There are no 

observations near the mean or median 

in var2 (Figure 2.23), nor is there a clear 

single mode, although 12 is slightly more 

frequent than 2. Where the observations 

in var1 are clustered near the centre, the 

observations in var2 are clustered at the 

extremes. When a variable’s scores have 

two or more clusters as we see in var2, the 

mean and the median have little value as 

measures of central tendency. The expected 

value is certainly not the centre. In effect, 

there are two expected values, one at either 

extreme. The observations in var3 (Figure 

2.24), like those in var1, have a mean, 

median, and mode all of 7.0. And like 

those observations in var1, those of var3 

also have a range of 10. The observations 

Figure 2.22  var1 histogram
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Figure 2.23  var2 histogram
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Figure 2.24  var3 histogram

in var3, however, are clustered at the low 

end of the range, with the single exception 

at the highest value.

Although the centre and spread of 

var1 is what we typically assume to be 

the case, var2 and var3 illustrate that 

it is important to examine how the 

observations are clustered in order to avoid 

misinterpretation. var3 illustrates the effect 

of a single extreme value. Remember, all 

three variables have a mean of 7.0 and 

a range of 10. Despite this equivalence 

in these measures of central tendency, 

the distribution of the observed values 

in these three variables differs greatly. In 

this case, using only the mean and range 

to describe the data fails to adequately 

summarize the three variables and leads 

to erroneous comparative conclusions. For 

example, if these were quiz marks from 

three sections of a class, using only the 

mean and the range to describe the performance of the three sections leads to the conclusion that 

the three sections performed similarly. Clearly, this is not the case. Is it this sort of dilemma which 

drove Mark Twain and Benjamin Disraeli to say that there were ‘lies, damned lies, and statistics?’

To avoid some of the problems associated with clustering differences and extreme scores, some 

researchers report the inter-quartile range (IQR) when describing their data. The IQR range can be 

computed by segmenting the rank-ordered values into quartiles. This is done by determining the 

median of the scores and then determining a median for the upper and lower halves of the rank-

ordered scores. This divides the scores into four equal segments or quartiles. (Note: SPSS uses a 

different procedure for determining the quartile cut-offs. This can result in slightly different values 

at times.) Once this is done, the median of the lower half is subtracted from the median of the 

upper half to produce the inter-quartile range: IQR = Q3 – Q1. Half of the observations will fall 

between the median of the lower half and the median of the upper half. Returning to our three 

variables used for examining the overall range, it is clear how the IQR helps to differentiate the 

three sets of observations.

If you entered the data into SPSS, you can return to the Data Editor window, select Analyze, 

then Descriptive Statistics, and finally Frequencies. From the Statistics menu click the box in 

the upper left-hand corner next to Quartiles (Figure 2.25). This will add the values associated 

with the 25th, 50th, and 75th percentiles for each variable to the output (Figure 2.26). 

The value associated with the 50th percentile is the median; the value associated with the 25th 

percentile (Q1) is the median of the lower half; and, the value associated with the 75th percentile 

(Q3) is the median of the upper half.
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For var1, the values associated with the 

75th and 25th percentiles are 8.0 and 6.0, 

respectively, and the IQR is 8.0 – 6.0 = 2.0. 

For var2, the values associated with the 

75th and 25th percentiles are 12.0 and 2.25, 

respectively, and the IQR is 9.75. For var3, the 

values associated with the 75th and the 25th 

percentiles are 7.0 and 6.0, respectively, and 

the IQR is 1.0. Remember, 50% of the scores 

will always fall within the IQR. With respect to 

the three variables, the IQRs indicate that the 

observations in var2 have the greatest spread of 

the three and those of var3 are spread out the 

least. Looking at the histograms again, the IQRs 

correspond better with the data than do the 

three overall ranges. Of course, the IQR does 

not indicate the spread of the observations 

beyond the middle two quartiles. Nor does it 

specify how the observations are spread out 

within the middle two quartiles.

In addition to being a descriptive statistic 

of spread, the IQR is used to construct another 

pictorial representation of data: the box-and-

whisker plot (Tukey, 1977). Box-and-whisker 

plots are graphic representation of a variable’s 

centre, IQR, and range. Box-and-whisker plots 

are often used to graphically compare the 

distributions of two or more variables. Figure 

2.27 depicts the box-and-whisker plots for 

var1, var2 and var3.

The y-axis is scaled in the units of 

measurement used to record the variables 

depicted in the graph. If multiple variables 

are depicted in a single graph, they must be recorded using the same scale of measurement (e.g., 

the number of correct items on a quiz). The bottom of each rectangular box represents the 25th 

percentile. The top of each box represents the 75th percentile. The horizontal line inside a box 

denotes the median. The whiskers extend as far above and as far below the box to the highest and 

lowest score within 1.5 IQRs from the median.

Any scores beyond the 1.5 IQRs above or below the median are represented by dots or 

special characters. The dot above the whisker in var1 represents the score of 12. The ‘20’ next 

to it identifies it as case (row) 20 for var1 in the Data Editor. The star above the whisker in var3 

represents the score of 16. The ‘20’ next to it again identifies it as case (row) 20 for var3 in the 

Figure 2.25

Figure 2.26

02_BORS_CH_02.indd   53 9/28/2017   6:12:11 PM



DESCRIPTIVE STATISTICS54

Data Editor. The nearly complete (virtually invisible) lack of whiskers for var2 and var3 reflects the 

constricted clustering of the observations.

To create the box-and-whisker plots for var1, var2 and var3 select the Graphs category in the 

Data Editor, cursor down to the Legacy Dialogs and then move over and down to the Boxplot 

option. Because we are summarizing more than one variable, select the Summaries of separate 

variables button when the Boxplot window appears (Figure 2.28) and click Define. In the Define 

Simple Boxplot window highlight and move the three variables over to the Boxes Represent 

area (Figure 2.29) and click OK. The box-and-whisker plots will appear in the output window.

review question

In var2 there are no scores above the IQR. The whisker is equal to the top of the box. Why? Why are 
there no whiskers on the box for var3?

 Web Link 2.8 for an answer to the review question.

Variance and standard deviation

For measurement data, the most common measure of central tendency is the mean. When 

the mean is used, the most common measure of spread reported by researchers is the variance. 

Like the range and IQR, the variance is a single value that indicates something about how the 

observations are spread out. It is not directly based on the span of the observations, which only 

var1
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o20
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Figure 2.27  Box-and-whisker plots for var1, var2 and var3
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involves two values. Rather, it is based on each 

observation’s relation to the mean. It is the average 

squared distance or deviation of a set of scores from 

their mean. Remember, a mean is the value that 

minimizes those squared distances, so using those 

squared distances as a measure of spread should 

not be a surprise. The formula for the sample 

variance is

s
y y
n

2
2

1
=

−∑
−

( )
=

sum of squared deviations
degree of freedom

.

When n – 1 is in the denominator, rather than n, 

variance is being used as an inferential statistic. 

That is, it is employed as an estimate of the 

population variance, σ2. When variance is an 

inferential statistic, because y  is only an estimate 

of μ, we need to subtract 1 from the number of observations. Degrees of freedom are presented in 

more detail later in the chapter.

Figure 2.28

Figure 2.29
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Using the mean and variance to summarize a set of observations results in the following 

understanding. If an observation (observed score) is randomly selected from a given sample, we 

would expect it to be the mean. We intuitively know, however, that the chance of randomly selecting 

a score that is equivalent to the mean is extremely small. In fact, a sample’s mean may not correspond 

to any of the actual observations in the sample. How wrong will our expectation be? In other words, 

what is the expected difference between the mean and any randomly observed score? In terms of 

squared units, on average, we will expect to err by the value of the variance. The mean is the expected 

score and the variance is the expected error. This is most applicable for those cases where the variable 

has a single mode and the observations are roughly symmetrically distributed about the mean.

review questions

1	 Why are the variances of the following two sets of scores the same? 

	 Set A: 1, 2, 3. 
	 Set B: 101,102,103.

2	 Can you create a data set of five observations that has a mean of 3 and a variance of 4?

 Web Link 2.9 for the answers to the two review questions.

The greater the variance, the greater the spread in the scores about their mean. It is this 

last element – about their mean – that makes the variance different from the range and IQR. 

Variance creates a link between the measure of central tendency and spread. If you entered 

var1, var2 and var3 into SPSS, return to the 

Data Editor window.

Select Analyze, then Descriptive 

Statistics, and then Frequencies. From the 

Statistics menu select Std. deviation and 

Variance in the Dispersion box.

In the output for var1, var2, and var3, we 

find that the variances are 4.737, 20.947, and 

4.737, respectively (Figure 2.30). Why is the 

variance of var2 so much greater than the 

variance of the other two variables? Look back at the histograms. It is because most of the scores in 

var2 are clustered further from their mean than are the scores in the other two variables.

review question

How is it possible that var1 and var3 can look so different in terms of their spread and have the same 
variance?

 Web Link 2.10 for an answer to the review question.

Note that the variances in var1 and var3 are 
identical, despite the fact that the spread of 
the scores is very different. This points to the 
limitations of variance. That is, the variances 
are most safely comparable when the variables 
have a single mode and when the observations 
are roughly symmetrically distributed about the 
means. Despite such limitations, variance is a 
crucial element in most forms of statistical analysis.
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The formula for the true population  

variance is

σ
µ2

2

=
−∑( )y
N

,

where N is the number of observations that 

comprise the population of interest. Because 

variance is computed in squared units, it is 

difficult to picture it as a measure of spread. 

Variance does have important advantages, but 

transparency is not one of them. For this reason, 

particularly for descriptive purposes, variance is 

often converted into standard deviation.

By taking the square root of variance we 

return to the initial units of measurement. 

Thus the sample standard deviation is given by

s s
y y
n

2

1
= =

−∑
−

( )2

.

The corresponding formula for true population standard deviation is

σ σ
µ2

2

= =
−∑( )y
N

,

where N is the number of observations that comprise the population of interest.

The standard deviations of var1, var2, and var3 are 2.18, 4.58, and 2.18, respectively. These 

values inform us that if we randomly select observations from var1 and use their mean (7.0) to 

blindly guess the observations’ values, on average we would be wrong by approximately 2.18 

quiz items. The same is true for var3. With respect to var2, we would be wrong on average by 

4.58 items.

Figure 2.30

Height
(inches)

77 67 54 46 68 64 62 38 56

Figure 2.31

It is not easy to understand what a variance of 143.36 means with respect to the height of the above nine 
characters shown in Figure 2.31 (1 inch equals 2.54 cm). Variance is in squared units of measurement: 
squared seconds, squared dollars, the squared number of correct answers on an exam, etc.
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It may be asked why we square the difference between the mean and the scores in the first 

place, if subsequently the results will be unsquared. First, because the mean cuts the total value 

of the sample in half, half of the total value will be positive and half will be negative. Thus, the 

total difference between the mean and the individual observations will always be zero. This can be 

rectified, of course, by calculating the absolute value of the differences. Will this result in the same 

value as first squaring the deviations and then taking the square root? No, it will almost always be 

different. Furthermore, as we will see, by first squaring the deviations, our measure of spread gains 

an important quality.

 Web Link 2.11 for a discussion regarding the difference between the squared and the absolute deviations.

The effect of a single score on variance

Like the mean, variance is not a resistant statistic and is sensitive to extreme scores. To examine this 

sensitivity we will explore the set of 19 scores from the hypothetical ten-item multiple-choice quiz 

which we first encountered in Section 2.5: 

1, 2, 3, 3, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 7, 7, 8, 9. 

If you wish, open the SPSS Data Editor window and enter the scores. First calculate the mean, 

median, standard deviation, and variance with the data as given. Then calculate those statistics 

three more times: after changing the 9 first to a 10; after changing it to a 20; and finally, after 

changing it to 100. Notice that there are no changes in the median. Note also the dramatic increase 

in variance (from 4.00, to 4.50, to 15.26, to 480.29). Because the mean and the variance are 

sensitive to extreme scores, vigilance is required to ensure that such scores do not unduly influence 

our analyses and conclusions. Regarding the fourth data set, do you think that stating that it has 

a mean of 9.79 and a variance of 480.29 is a fair description? Are the scores in the fourth version 

of the data set really that different from those in the first? Your answer in both cases should be no.

Besides being extreme, researchers worry that such scores may be erroneous. Perhaps there 

was a mistake recording the score or some special circumstance existed that produced the score, 

a special circumstance with which the researcher is unconcerned. Stated differently, perhaps the 

observation does not arise from the same population as do the other scores. Researchers certainly 

do not want recording errors or special circumstances to unduly influence the outcome of their 

research. When scores are found to be too extreme it is standard practice to either eliminate them 

or to transform them.

• • • • •

Imagine you are recording the speed with which 
a sample of ten university students can name 
primary colours that flash onto a computer screen. 
We would normally expect that students will be 

able to do so in less than half a second. Now 
imagine that unbeknown to you one of the students 
is not a native English speaker. Having to name the 
colours in English rather than in his or her mother 
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tongue may slow that person down substantially. 
As a consequence, the mean and variance of 
your sample of 10 students will be greater than it 
would be without the non-native English speaker. 
This is a simple example where one observation 
originates from a different population and reflects 
a circumstance that we were not interested in 

exploring (e.g., differences in mother tongue). 
The term ‘different population’ does not refer to 
a geographical location. A different population 
refers to observations that have a different μ from 
the population from which you believe you are 
sampling. In this case, you assume that you are 
sampling native English speakers.

The first question that needs answering is, when is a score too extreme? This question needs to 

be answered before data are collected. It is not appropriate to establish the criterion after viewing 

the data. Typically, researchers use a distance of either 3 or 4 standard deviations from the mean 

as the criterion. Unless stated otherwise, throughout this book we use 4 standard deviations as 

the cut-off. That is, if an observation is more than 4 standard deviations above or below its mean, 

it will be considered too extreme, an outlier. This can be tested by subtracting the mean from 

any questionable score and then dividing the difference by the sample’s standard deviation. If we 

examine the four versions of the above data set,

1, 2, 3, 3, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 7, 7, 8, 9,(10, 20, 100), 

we find that only in the final version, where the highest score is 100, do we find an outlier:

100 9 79
21 92

4 23
−

=
.

.
. .

Because 4.23 is greater than 4.0, we conclude that a score of 100 is an outlier in this sample and it 

must be either deleted or transformed. If we test the largest value (20) in the third version of the 

data set, we find that the 20 is not an outlier, 

20 5 58
3 88

3 70
−

=
.

.
. .

Remember, scores in themselves are not outliers. They are only outliers – too large or too small –  

for a given sample with a particular mean and standard deviation.

The second question which needs to be answered is, what should be done with an outlier? 

The first, and perhaps the most common, strategy is to simply delete the outlier from the sample. 

After doing so, the descriptive statistics must be recalculated. In the example above, once we have 

removed the 100 from the fourth version of the sample, the new mean, variance, and standard 

deviation are 4.78, 3.24, and 1.80, respectively. This is a great change from the mean and standard 

deviation of 9.79 and 480.29 when the 100 was included in the sample. Note that the median 

and mode continue to remain unchanged: 5.00 and 5.00. The outlier’s effect is on the mean and 

variance. This strategy of removing an observation is not always the most desirable, especially with 

small sample sizes.

Another common strategy is to winsorize the observation. Winsorizing (a process named after 

the biostatistician C. P. Winsor) recodes the outlier to the nearest acceptable higher or lower value 
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(Hastings et al., 1947). In our current working example, we calculate the winsorized score using 

the original mean and standard deviation. The highest acceptable score is 4 standard deviations 

(21.92 × 4 = 87.68) above the mean (9.79). The new winsorized score (9.79  +  87.68) is 97.47 

(rounded to 97), which is not that different from the original score of 100. Again a new mean, 

variance, and standard deviation must be calculated. In this case they become 9.63, 450.69, and 

21.23, respectively.

review question

What would be the new mean and variance had we winsorized the score of 100 to three standard 
deviations above the mean rather than to four?

 Web Link 2.12 for the answer to the review question.

The choice of strategy for addressing outliers can make a big difference to the findings. In our 

example, when we chose the strategy of deleting the outlier, the descriptive statistics were much 

closer to the original statistics when the highest score was 9 than they were when the highest score 

was 100. On the other hand, after winsorizing, the statistics were not greatly different from those 

produced when the outlier was included. The choice of criterion for identifying outliers also makes 

a difference in the results of analyses discussed in Parts II and III of this book.

Sampling distribution of the mean

Not only is there variance in observations or scores, there is also variance in statistics that 

summarize observations. Recall that statistics, such as the mean, are used as estimates of population 

parameters. As a consequence, there will be sample-to-sample differences in those estimates. 

Imagine randomly sampling the accumulated debt of 100 students graduating from your university 

this year. Now imagine taking another random sample of 100 students, again from this year. It is 

extremely unlikely that the means of the two samples will be the same. Therefore a mean, variance, 

and standard deviation of the means can be computed. Conceptually, with a very large number 

of sample means all drawn from the same population, the formulae for the mean of the means, 

the variance of the means, and the standard deviation of the means are straightforward. These 

formulae assume that sample size is held constant. The mean of the means is

u
y

ky =
∑ ,

where k is the number of samples, which theoretically could be infinite . The variance of the means is

σ
µ

y

y
k

2
2

=
−∑( )
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and the standard deviation of the means is

σ
µ

y

y
k

=
−∑( )2

.

It can be demonstrated that with only one sample mean the variance of the mean, referred to 

as the sampling distribution of the mean, and the standard deviation of the mean, referred to as 

the standard error of the mean, can easily be estimated. The sampling distribution of the mean is

σ y

s
n

2
2

= ,

where s2 is the variance of the sample’s observations and n is the sample size; the standard error 

of the mean is

σ y

s
n

= ,

where s is the standard deviation of the sample’s observations.

These ‘statistics of statistics’ are central to almost all inferential tests which will be presented in 

Parts II and III of this book. The reason for the change in terminology is context. While variance 

and standard deviation indicate that the statistics refer to observations, sampling distribution and 

standard error indicate that the statistics refer to statistics.

	 2	 7   WHAT CREATES VARIANCE?
The answer to this question is one key to understanding research design and statistical testing. Why is 

there variance? There is variance because people, animals, plants – all members of any class of things –  

differ. No two people are exactly the same. But that simply begs the question, why do they differ? 

From the perspective of research and statistical analysis the answer requires a bit of a digression.

Anything you wish to study is a variable, either a dependent or a criterion variable. Memory 

is an example. If you test the memories of a group of people, you will find that they vary. There 

will be a mean and a variance in the memory scores. Like any activity, memory performance will 

be influenced by an unknown number of other variables. Some of these will have a positive effect 

on a person’s memory and some will have a negative effect. Those with more positive effects than 

negative effects will be above the average performance and those with more negative effects will be 

below the average performance. The greater the preponderance of positive effects, the further above 

average the subject’s memory performance. The greater the preponderance of negative effects, 

the further below average the subject’s memory performance. Memory for a list of words may be 

influenced by such factors as the person’s familiarity with the words, the time spent studying the 

words, as well as a host of other factors such as how much sleep he or she had the night before, 

their memorization strategy, and how much coffee he or she has consumed. There is a host of 

influences of which you are unaware.
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Let us assume that variable y (memory test 

score) is influenced by four factors: x1 (sleep), 

x2 (food), x3 (arousal), and x4 (study strategy). 

Insufficient sleep and nutrition negatively 

affect memory performance. Being unmotivated 

or being overly anxious (arousal level) also 

negatively affect memory performance. Finally, 

having a strategy other than simply using rote 

memory to study improves memory performance. 

Assume that each of the four factors can only 

take the value of either 0 or 1. The 0 represents 

the negative effect of the factor and the 1 the 

positive effect. This hypothetical model of 

memory performance is depicted in Figure 2.32 .

Someone may have the following pattern 

of 0s and 1s: x1 = 0, x2 = 1, x3 = 1, and x4 = 1. 

The total of the person’s 1s and 0s is 3. Another 

person may have two 1s and two 0s and thus a 

total of 2. Yet another person, albeit someone 

very unlucky, may have no 1s and four 0s 

(assume that it is the 1 that improves memory). 

This person would have a total of 0. The individual totals are the memory scores that we observe. 

Our group’s observed scores will range from 0 to 4. Of course there are many more factors than 

four which affect performance on a memory test, and not all are either a 0 or a 1. The more factors 

that are affecting their memories, the greater the range of scores and the greater the variance. If in 

the current four-factor model you hold one of those four factors constant at 0, however, then the 

scores will only range from 0 to 3, and the resulting variance will be reduced.

One important goal of experimental control mentioned in the previous chapter is to hold 

constant as many of the sources of variance as possible, and to reduce the variance in the observed 

scores. Reducing the variance is important when researchers are evaluating the reliability of the 

observed differences or the associations. In this regard, variance is a key factor for answering a key 

question posed in Chapter 1: what is expected due to chance alone?

 Web Link 2.13 for an interactive demonstration concerning the source of variance based on the logic 

of Figure 2.32.

Skewness and kurtosis

Two other descriptive statistics associated with spread are skewness and kurtosis.

Skewness indicates how symmetrical the observations are about their mean. A value of 0 

indicates that the spread of the observations is perfectly symmetrical about their mean. Negative 

Good memory

Average memory
two 0s & two 1s

three 0s and one 1

four 0s and no 1s

Poor memory

no 0s & four 1s

one 0 & three 1s

Sleep
0 or 1

Food
0 or 1

Arousal
0 or 1

Study strategy
0 or 1

Figure 2.32
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values indicate that the observations below the mean stretch out further than do the observations 

above the mean. Positive skewness values indicate the opposite. One easy estimate of skewness 

allows for some conceptual understanding of the measure:

Skewness = 3 
sample mean sample median

sample standard deviatio
−

nn
.

Remember that when the distribution is symmetrical, the mean and median will be the same 

value. Looking at the above formula, it can be seen that if the sample standard deviation is held 

constant, the greater the difference between the sample mean and the sample median, the greater 

the skewness. It can also be seen that if the difference between the sample mean and the sample 

median is held constant, the smaller the sample standard deviation, the greater the skewness.

It is misleading to speak of the ‘average’ or ‘per capita’ income or wealth in most societies 

today. As this fictional distribution in Figure 2.33 illustrates, income is markedly skewed. A few 

people have much of the wealth and many people have little of the wealth. Such skewness is 

disclosed by many economic, social, political, and cultural indices. When describing such indices, 

it is important to be specific about which ‘average’ is being reported. When data are substantially 

skewed, it is always best to report all three measures of central tendency.

Kurtosis tells us how clustered or how flat is a set of scores. A kurtosis value of 0 indicates that 

the observations are mesokurtic, neither overly clustered nor overly flat. Negative values indicate 

that the spread of the observations is 

relatively flat. Positive kurtosis values 

mean that the spread of the observations 

is clustered and very pointy. The 

larger the absolute values of skewness 

and kurtosis, the greater the degree of 

skewness and kurtosis.

Skewness and kurtosis are related to the 

famous normal distribution (skewness = 0  

and kurtosis = 0), a topic dealt with in 

more detail in the next chapter. At this 

point, let us simply say that a normal 

distribution is one that is unimodal (the 

mean, median, and mode, are all the 

same value), it is symmetrical, and it is 

neither overly flat (platykurtic) nor overly 

clustered (leptokurtic). It is the normal 

distribution that is often assumed for 

using parametric statistics. Nonparametric 

statistics make no such assumptions 

about the distribution of the scores. Figure 2.33

The mean income is here.

The median income is here.

The model income is here.
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• • • • •

Kurtosis as defined originally by Kark Pearson is a 
measure of the frequency of extreme deviations from 
the mean and the standard normal distribuation 

would have a Kurtosis of 3. It is common practice 
now to subtract three from Pearson’s measure, giving 
the standard normal distribution a Kurtosis of zero.

Figure 2.34 Figure 2.35

Return to the Data Editor window where we have entered the data for var1, var2, and var3. 

Again select Analyze, then Descriptive Statistics, and then Frequencies. In addition to the pre-

vious choices, from the Statistics menu, select Skewness and Kurtosis (Figure 2.34).

The output window (Figure 2.35) reveals that var1 has a skewness of 0.0. Inspecting the 

observations in var1, we see that they are symmetrical about the mean. var2 has a slight 

positive skewness: 0.015. Finally, var3 is considerably skewed: 4.084. The positive kurtosis 

for var1 (1.232) indicates that the observations in var1 are somewhat flat. var2 (–2.114) is 

somewhat clustered. Finally, var3 is substantially clustered (17.613). How important are the 

deviations from 0 and when are they important? We will address these questions in a later 

chapter. There are rules of thumb for the severity of skewness and kurtosis. Notice in the SPSS 

output that along with Skewness and Kurtosis there are their standard errors: Std. Error of Skewness 

and Kurtosis. These standard errors are a type of variance, the expected variances in the statistics 

themselves. More pertinent is the fact that these standard errors represent the variability in 

these statistics that is expected due to chance alone. According to one rule of thumb, if you 

divide the statistic (skewness or kurtosis) by its standard error you can evaluate the severity. 

One rule of thumb is that if the quotient is greater than ±1.96, then the key assumption for 

parametric tests is called into question. Figure 2.36 presents the results of the evaluations of 

skewness and kurtosis for the three variables. The skewness in var3 and the kurtosis in var2 and 

var3 are problematic.
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An outlier can be, at least in part, 

responsible for a variable’s skewness by 

creating a tail at one end of the distribu-

tion. Addressing the outlier often reduces 

any problem regarding skewness. Earlier 

in the chapter we saw how a single score 

can greatly influence a sample’s mean and 

variance. Returning to the data depicted 

in the histogram (Figure 2.37) and calcu-

lating the mean, variance, skewness, and 

kurtosis with and without the highest 

observation (16) makes clear the potential 

impact of a single observation on skew-

ness and kurtosis.

Simply removing the single observation 

changes the mean from 7.00 to 6.53; it 

changes the variance from 4.74 to 0.26; it 

changes the skewness from 4.08 to –0.12; 

and it changes the kurtosis from 17.61 

to –2.24. Not only are there quantitative 

changes in the skewness and the kurtosis, 

but in some cases changes in kind. The skewness went from being positive to negative and the 

kurtosis went from being clustered to being nearly flat.

As will be seen in the last few sections of Chapter 3, 1.96 is an important and almost magical number. 
Many other numbers used for evaluating statistics are derived from it.

Variable Statistic Std. Error Quotient

Skewness

Var1 0.000 0.512 0.00

Var2 0.015 0.512 0.03

Var3 4.084 0.512 7.98

Kurtosis

Var1 1.232 0.992 1.24

Var2 -2.114 0.992 -2.13

Var3 17.613 0.992 17.76

Figure 2.36
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	 2	 8   MEASURES OF CENTRAL TENDENCY: CATEGORICAL DATA
Nominal data

For nominal data, where numbers are merely names, the calculation of means and medians makes little 

sense. If we can change all of the 3s to 1s, change the 1s to 2s, and change the 2s to 3s, what sense does 

it make to sum all of the 1s, 2s, and 3s and calculate a mean or median? For example, imagine that you 

are examining the students’ choices of beverage in your class. You assign all of those students choosing 

coffee a score of 1; you assign all of those choosing tea a 2; and you assign all of those choosing juice 

a 3. Then you find that 10 students chose coffee, 15 chose tea, and 5 chose juice. You might wish to 

enter these 30 observations into the SPSS Data Editor window and run the descriptive statistics of mean 

and median. If we calculate the mean and median, we find that they are 1.83 and 2.00, respectively. 

If, however, you recoded the 5 juices as 1, the 10 coffees as 2, and the 15 teas as 3, you find a mean of 

2.33 and a median of 2.5. The median goes from being in the tea range to being between tea and coffee.

Furthermore, because both the numbers (names) and their rank ordering are arbitrary, it makes 

no sense to calculate the usual measures of spread such as range and variance. Imagine what would 

happen not only to the mean and median but also to the range and variance if we decided to name 

the choice of juice ‘100’. Would the spread in 

the choice of beverage really change?

The mode, as an indicator of the most 

common category of response, does have a 

role to play in summarizing nominal obser-

vations. In this context, however, the mode 

is not a measure of central tendency; it is simply an indicator of the most common observation. In 

the beverage example, tea was the most frequently chosen beverage.

Ordinal data

For ordinal data, where numbers represent a rank ordering of categories, both the mode and the 

median are useful measures. The mode again reveals the most common category. The numbers 

Will the real mean and median choice of beverage 
please stand up? Do we really wish to say that the 
mean choice of beverage is either 1.83 or 2.33 
and that the median choice is either 2.00 or 2.50?

Figure 2.38
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as names of categories are still arbitrary, but 

because in an ordinal scale their ordering from 

smallest to largest is not arbitrary, the median 

can be useful. The median indicates where in the 

rank ordering of the observations the middle is 

to be found. For example, an employer records 

the level of education of her employees and 

finds that 10% have not completed high school, 

34% have completed high school, 20% spent 

some time at university, 26% have completed 

university, and 10% have completed at least one 

postgraduate programme. The most common 

category of level of education, or the mode, of her 

employees is ‘completed high school’. Because the 

median divides the observations in half (the 50th 

percentile), the median would be the category 

‘spent some time at university’.

Let us enter the following 50 observations 

into the SPSS Data Editor reflecting the above 

information, where the coding for not completing 

high school, completing high school, some 

university, completed university, and completed 

postgraduate program is 1, 2, 3, 4, and 5, 

respectively (the data are rank-ordered for ease of 

entry and analysis):

1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 

2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 

4, 4, 4, 4, 4, 5, 5, 5, 5, 5.

Be sure that the Display Frequency Tables option 

is selected along with the statistical options of 

median and mode. The results in Figure 2.38–2.40 

confirm that the mode is category 2 (completed high school) and that the median is category 3 

(some university). That is, although the most common level of education is completed high school, 

at least half of her employees had at least some university education.

	 2	 9   MEASURES OF SPREAD: CATEGORICAL DATA
Because both nominal and categorical data have neither equal intervals between categories nor 

a true zero, the usual measures of spread have little relevance. There have been, however, many 

attempts to develop single-number indexes of spread for categorical data. Many of these indexes 

Figure 2.39
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involve the relative predominance of the mode. Also, rather than being indices of distance 

or squared distance from a measure of central tendency, they are indices of the proportion of 

observations that differ from the mode, relative to the number of categories observed.

Perhaps the simplest measure of spread for nominal data is Freeman’s (1965) variation ratio (VR). 

It is most frequently used when there are only two nominal categories, such as men and women. 

The variation ratio is 

VR = −1
fm
N

,

where fm is the frequency of the modal category and N is the total number of observations. 

Thus, if the modal category is 60 out of a 100 observations, then fm/N = 60/100 = 0.6. The resulting 

VR = 1 – 0.6 = 0.4. The greater the VR, the more equally distributed are the observations. If the 

modal category in the previous example was 75 out of 100, then VR = 1 – 75

100
 = 1 – 0.75 = 0.25, 

less equally distributed than the previous example.

Another useful index of spread for categorical data that is applicable for both nominal and 

ordinal scales is the index of qualitative variation (IQV): 

IQV  (100 ) = − / − )K pct K2 2 2100 1∑ { }( ,

where K is number of categories and ∑pct 2 is the sum of the squared frequencies of all of the 

categories. The IQV provides a standardized value between 0 and 1: a 0 indicates a complete 

lack of diversity where one category totally dominates; a 1 indicates the maximum amount of 

diversity where all categories have the same frequency. When the IQV is multiplied by 100, the 

result can be interpreted as the percentage of the maximum possible diversity present in the 

observations.

In the above examples of employees’ education level the researcher finds the following IQV:

IQV 5 10,000 (10 + 34 + 20 + 26 +10 ) 0.946 942 2 2 2 2= ( ) −( )∑ × = =/ ( , )10 000 4 ..6%

This means that 94.6% of the diversity possible in the observations is present. An examination of 

the data’s histogram illustrates that although there is a clear mode, it certainly does not dominate 

the distribution of the observations.

challenge question

Would changing the numbers that label the categories in the above education level example to 1, 3, 5, 
7, and 9 change the median and IQV? If you think the change will alter the median and IQV, why and 
how? If you think the change will make no difference, why not?

 Web Link 2.14 for an answer to the challenge question.
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	 2	 10   UNBIASED ESTIMATORS

• • • • •

μ is the value to expect (best guess) when an observa-
tion is randomly selected from a population, and y  is 
an estimation of μ. s2, often called error, describes the 
observed unpredictability of the observations which 
are, at least initially, due to chance alone. The word 
‘initially’ in the previous sentence captures the start-
ing point for all forms of data analysis. Although it is 

unexplained, what is due to chance alone is not unex-
plainable. One way to understand empirical research 
is to frame it as an effort to explain some of the as yet 
unexplained: an attempt to reduce the error in our 
predictions. The reason for s2 is not supernatural. s2 
has its sources, and the goal of research is to identify 
those sources.

In the above section on variance and standard deviation, n – 1 rather than n was used in the 

denominator to calculate the average sum of squared deviations or variance. Also, the mean and 

the standard deviation were both found to be sensitive to extreme scores or outliers. Although the 

mean and the variance are not resistant statistics, they are important when conducting a parametric 

analysis. The reason for their importance is that, unlike other measures of central tendency and 

spread, the sample mean ( y ) and variance (s2) – with n – 1 in the denominator – are unbiased 

estimators of their corresponding population parameters, μ and σ2.

An unbiased estimator is a statistic whose expected value (E) is the true population parameter. 

An E is a type of mean. It is a mean of a statistic rather than a mean of individual observations. 

Furthermore, it is the mean of an infinite number of instances of a statistic or of all possible 

instances of a statistic. The sample size for these instances must be held constant.

Without going through the algebraic proof here, it may be worthwhile to illustrate in 

other ways the unbiased nature of the sample mean and variance. First, let us examine a very 

small population of three observations: 101, 102, and 103. Other authors, such as Howell 

(2002), have found this type of empiri-

cal example to be effective for illustrating 

the point. The μ of the population is (101 

+102 +103)/3 = 102. The σ2 of the popu-

lation is [(101  –  102)2 + (102  –  102)2 +  

(103 – 102)2]/ 3 = (1 + 0 + 1)/3 = 0.67. These 

are the true μ and true σ2 of the small popu-

lation. The first column of Figure 2.41 shows 

all possible randomly selected samples of 

two observations from the population in 

question. The second column reports the 

mean of each of those samples. The third 

column reports the variance as calculated 

with n in the denominator. The fourth col-

umn reports the sample variance with n – 1 

Sample y s2(n) s2(n-1)

101,101 101.00 0.00 0.00

101,102 101.50 0.25 0.50

101,103 102.00 1.00 2.00

102,101 101.50 0.25 0.50

102,102 102.00 0.00 0.00

102,103 102.50 0.25 0.50

103,101 102.00 1.00 2.00

103,102 102.50 0.25 0.50

103,103 103.0 0.00 0.0

E = 102.0 0.33 0.67

Figure 2.41
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in the denominator. The bottom row of the table reports the expected values (E) for the sample 

mean and variance from both forms of calculation. In this case the expected value is the mean 

of all possible two-observation samples as reported in the table.

Note that the E( y ) = μ: 102.0. Also note that the average s2 with n – 1 in the denominator equals 

σ2 (0.67), whereas the average s2 with n in the denominator underestimates σ2 (0.33). This does not 

mean that a sample variance with n – 1 in the denominator will always be closer to the population’s 

true value. This systematic underestimate when n is used in the denominator is related to the fact that 

each sample mean minimizes the sum of squared deviations for each individual sample.

Any value (including μ) other than y  results in a greater total of the squared deviations. 

If μ is known, why use a different estimate for each sample? In fact, we should not. Look at 

Figure 2.42. The first column of Figure 2.42 again enumerates all possible randomly selected 

two-observation samples from the population in question. The second column reports μ, which 

here is used to calculate all of the sample variances. The third column reports the variance for 

each sample as calculated with n in the denominator. The fourth column reports the sample vari-

ance with n – 1 in the denominator. Again, 

the bottom row of the table reports the 

expected values (E) for the sample mean and 

variance from both forms of calculation. 

Not surprisingly, again E( y ) = μ: 102.0. 

Now, however, the s2 version with n – 1 in 

the denominator on average overestimates 

σ 2 1 33( . ) , whereas the s2 version with n in 

the denominator now equals σ 2 0 67( . ) . 

These two tables illustrate that n – 1 in the 

denominator of sample variance is there to 

correct for the fact that we are estimating  

μ with y . Should μ be known, there would 

be no need to make the correction.

challenge question

How does sample size affect the extent of bias when n rather than n – 1 is used in the denominator 
of the variance formula?

 Web link 2.15 for the answer to and discussion of the challenge question.

	 2	 11   PRACTICAL SPSS SUMMARY
We now return to the problems that were posed at the outset of this chapter. You were given 

hypothetical quiz scores from two sections of a statistics course. You were asked, if the scores 

Sample µ s2(n) s2(n-1)

101,101 102.00 1.00 2.00

101,102 102.00 0.50 1.00

101,103 102.00 1.00 2.00

102,101 102.00 0.50 1.00

102,102 102.00 0.00 0.00

102,103 102.00 0.50 1.00

103,101 102.00 1.00 2.00

103,102 102.00 0.50 1.00

103,103 102.00 1.00 2.00

E = 102.00 0.67 1.33

Figure 2.42
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were read to you, would you have a sense of how each section performed and how their 

performances compared?

Section 1: 7, 8, 5, 5, 9, 10, 2, 7, 6, 4, 8, 7, 8, 7, 3, 9, 6, 8, 6, 9, 8, 9, 5, 7, 6, 7, 6, 7, 9, 5, 5, 9, 7, 11, 

7, 6, 4, 7, 8, 10.

Section 2: 6, 3, 6, 8, 5, 7, 6, 7, 8, 7, 8, 5, 5, 8, 7, 2, 7, 6, 4, 7, 7, 8, 5, 5, 8, 10, 1, 7, 6, 4, 8, 7, 2, 7, 3, 

4, 6, 8, 10, 8.

You begin by summarizing and exploring each section’s 40 scores separately. In many cases it is best 

to begin with frequency histograms.

Enter the data from the two variables into the SPSS Data Editor window, if you have 

not done so already. Temporarily switch to the Variable View (tab at lower left of screen) 

and ensure that the variables are listed as Numeric under Type and as Scale under Measure 

(Figure 2.43). The number of items correct on the quiz is an example of a ratio scale. SPSS 

does not differentiate ratio and interval scales. The term Scale under the heading Type is 

used for either ratio or interval data.

Figure 2.43

After returning to the Data Editor window, select the Frequencies option from Descriptive 

Statistics under the Analyze menu. Highlight and move both variables over to the Variable(s) 

field (Figure 2.44). After opening the Statistics window select the Mean, Median, and Mode 

Figure 2.44
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central tendency options. Also select the Std. 

deviation, Variance, Range, Minimum, and 

Maximum from the dispersion options. Finally, 

from the distribution area, select the Skewness 

and Kurtosis options.

Press Continue and return to the Frequencies 

window and open the Charts window. Select 

the Histograms chart type (Figure 2.45) and then 

Continue. When you return to the Frequencies 

window click OK.

Scroll down the output window and find the 

histograms. The histogram for section1 clearly is 

unimodal (Figure 2.46) with most scores being 

clustered in the middle. It appears to be quite 

symmetrical. The histogram does not suggest the 

presence of any unusually low or high scores well 

beyond the others (possible outliers). The histogram 

for section2 also is unimodal (Figure 2.47). Its 

distribution is less symmetrical than that of 

section1, however, and it appears to be negatively 

skewed. Like the section1 histogram, the section2 

histogram does not suggest the presence of extreme 

scores or outliers.

This type of histogram is appropriate for the 

type of data in these two variables. When there 

are many possible scores (x-axis categories) and 

very few observations in any one score, binning 

is necessary. Frequency histograms are not very 

suitable when there are very few observations 

(e.g., less than 20). In such cases researchers rely 

solely on the descriptive statistics.

Next the descriptive statistics are examined 

(Figure 2.48). The fact that all three measures of 

central tendency (mean, median, and mode) are 

so similar indicates that section1 is symmetrically 

distributed. Using 4 standard deviations as the 

criterion, the scores can be examined for outliers. 

None are found.

The skewness of section1’s distribution divided by the standard error is –0.303/0.374 =  –0.81. 

The kurtosis of section1’s distribution divided by the standard error is 0.082/0.733  =  0.11. 

Because both values are less than 1.96, you may conclude that there is no problem with either 

of these measures.

Figure 2.45
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The scores for section2 had a mean of 6.15, a 

median of 7.00, and a mode of 7.00. The fact that 

the mean is somewhat lower that the median 

and the mode indicates that section2’s scores may 

be somewhat asymmetrically distributed. The 

skewness of section2’s distribution divided by the 

standard error is –0.605/0.374 = –1.62. The kurtosis 

of section2’s distribution divided by the standard 

error is 0.122/0.733  =  0.17. The skewness for 

section2 is greater than the corresponding values for 

section1, as initially suggested by the histograms. 

Because both values again are less than 1.96, you 

may conclude that there is no problem with either 

of these measures.

At the outset of Chapter 1 it was asked if 

ten digits had been randomly sorted into two 

columns or groups. Here we are faced with a more 

concrete incarnation of that problem: has one 

group’s performance been statistically different 

from the other? Imagine the two sections 

were given different textbooks from which 

to study. Did the difference in the textbook 

make a difference in performance? Some of the 

descriptive statistics suggest that there was no 

difference in performance: the medians, modes 

and ranges are identical, and the variances 

and standard deviations are quite similar. The 

difference in the means (6.93 versus 6.15) and 

the fact that the minimum and maximum scores 

are higher in section1 than in section2 suggest a 

difference in performance. But of course, as we 

know from Chapter 1, these differences could be 

due chance alone. The question is, how reliable 

are those differences? Can we conclude that 

textbook makes a difference?

To answer these inferential questions, we need 

procedures for determining the likelihood of 

observing such a difference (e.g., 6.93 – 6.15 = 0.78). 

To answer such inferential questions, it is necessary 

to combine descriptive statistics with procedures 

for calculating probabilities, which is the focus of 

the next chapter.
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 2 12  CHAPTER SUMMARY
In this chapter the most common univariate graphs and statistics used to summarize both measurement 

and categorical data were examined. Measurement data include interval and ratio number scales; 

categorical data include nominal and ordinal scales. This chapter focused on the importance of 

descriptively examining data as a first step in the process of analysis. Various versions of the most 

important univariate graphic display, the histogram, were explored. The most common descriptive 

statistics were defined and compared. For measurement data, the mean and the median are two 

important measures of central tendency. For categorical data, the mode is the most common measure 

of central tendency. In terms of measures of spread, while variance, being an unbiased estimator, is 

central for measurement data, the variation ratio is the typical measure of spread for categorical data.

The importance of the shape of a variable’s distribution was discussed and the need to examine 

the data for outliers was examined. The notions of skewness and kurtosis, indices of the symmetry 

and the flatness of a distribution respectively, were considered. Of particular note was the distorting 

effect of outliers and skewness on the mean and the variance. The material covered in this chapter 

provides half of the fundamentals for what is needed to understand the inferential statistical tests 

presented in Parts II and III of this book. The other half of the fundamentals is the topic of the next 

chapter: probability.

 2 13  RECOMMENDED READINGS
Phillips, J. L. (1999). How to think about statistics (6th ed.). New York: W. H. Freeman.

Chapters 1 –4 provide a simple summary of the core material covered in this chapter.

Weisberg, H. F. (1992). Central tendency and variability. London: Sage. 

Weisberg’s book provides more detail about some of the descriptive statistics discussed in this 

chapter. He also covers some descriptive measures not presented in this chapter.

Wheelan, C. (2013). Naked statistics: Stripping the dread from the data. New York: W.W. Norton. 

Wheelan provides a light-hearted approach to the material covered in this and subsequent 

chapters, along with examples from popular culture.

Holcomb, Z. C. (1998). Fundamentals of descriptive statistics. New York: Pyrczak Publishing. 

This book is almost entirely dedicated to a detailed exposition of the graphs and statistics presented 

in this chapter. It elaborates on everything from graphs to z-scores, from means to outliers.

 2 14  CHAPTER REVIEW QUESTIONS
Multiple-choice questions

 1 A researcher is interested in examining the voting behaviour of individuals in a small town. He 
contacted those eligible to vote to set up interviews with them. Of the people living in the town 7000 are 
eligible to vote. The researcher contacted 5000 of them; 5% of those contacted agreed to an interview 
with the researcher. What is the population?
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a Everyone in the small town
b The 7000 eligible voters
c The 5000 individuals contacted
d The 250 individuals who were interviewed
e None of the above

 2 A researcher is interested in examining the voting behaviour of individuals in a small town. He 
contacted those eligible to vote to set up interviews with them. Of the people living in the town 7000 are 
eligible to vote. The researcher contacted 5000 of them; 5% of those contacted agreed to an interview 
with the researcher. What is the sample?

a Everyone in the small town
b The 7000 eligible voters
c The 5000 individuals contacted
d The 250 individuals who were interviewed
e None of the above

 3 During the interviews the researcher questions the interviewees about their income and how many 
times they had voted previously. Income is what type of variable?

a Ratio and discrete
b Nominal and discrete
c Nominal and continuous
d Interval and continuous
e Categorical and discrete

 4 During the interviews the researcher questions the interviewees about their income and how many 
times they had voted previously. Previous voting behaviour is what type of variable?

a Ratio and discrete
b Nominal and discrete
c Nominal and continuous
d Interval and continuous
e Categorical and discrete

 5 Counting the number of patients who are categorized into one of several diagnostic categories for the 
sake of comparison is an example of ____________________.

a a continuous variable
b a categorical data
c measurement data
d an ordinal scale
e a leptokurtic scale

 6 If we attached numbers to the labels for the disorders used in Question 2, those numbers would be an 
example of _________________.

a an ordinal scale
b frequency data
c a nominal scale
d a ratio scale
e a continuous variable
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 7 The ______________ is more sensitive to outliers than is the _____________.

a median; mean
b mode; median
c mode; mean
d a continuous variable; a discrete variable
e standard deviation; mode

 8 The most common measure of central tendency for nominal data is the _______.

a median
b mean
c variance
d variation ratio
e mode

 9 A common measure of spread for nominal and ordinal data is the _________.

a median
b standard error of the mean
c variance
d variation ratio
e mode

10 When a distribution is overly flat it is said to be _________.

a positively skewed
b negatively skewed
c leptokurtic
d platykurtic
e bimodal

11 When a distribution is positively skewed, the ______ will be greater than the _______.

a mean, median
b mode, median
c mean, variance
d mode, median
e None of the above

12 The sampling distribution of the mean indicates ______.

a how much variance there is in your data due to chance alone
b how much variance in your observed mean is due to chance alone
c how much variance you expect due to chance alone in means sampled from the same population
d how much variance you expect due to chance alone in observations sampled from the same 

population
e how much variance you expect due to chance alone in variances sampled from the same population

Short-answer questions

 1 When could we use n rather than n – 1 in the denominator for sample variance? Why?
 2 What is the difference between a frequency histogram and a relative frequency histogram?
 3 When binning data is required for a histogram, what determines the number of bins?
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 4 What is the difference between a variance and a sampling distribution?
 5 What causes variance?
 6 What does it mean to say a statistic is resistant?
 7 What does it mean to say a statistic is unbiased?
 8 When will a single new observation added to a data set leave the mean unchanged?
 9 What is the primary difference between parametric and nonparametric statistics?
10 Why is the mean not very informative when a distribution is bimodal?

Data questions

 1 With the following data, construct a frequency distribution table and a frequency histogram with bin 
widths of 10. Observations: 44, 46, 47, 49, 63, 64, 66, 68, 72, 72, 75, 76, 81, 84, 88.

 2 With the data below, create a frequency histogram with five categories (bins) on the x-axis. Data: 24, 
21, 2, 5, 8, 11, 13, 18, 17, 21, 20, 20, 12, 12, 10, 3, 6, 15, 11, 15, 25, 11, 14, 1, 6, 3, 10, 7, 19, 17, 
18, 9, 18, 12, 15.

 3 What are the mean, the variance, sampling distribution of the mean, and the standard error of the 
mean for the data in Question 2?

 4 For the data in Question 2, are the skewness and kurtosis values a concern for the researcher who is 
assuming a normal distribution? (You will need SPSS to answer this question.)

 5 Create a population of three numbers (e.g., 10, 11, 12). Then analyse all possible samples of two, including 
samples such as 10 and 10. For all samples calculate variance using both n and n – 1. Then repeat this 
analysis using the population mean for each calculation, rather than the individual sample means. In the 
two series of analyses, which formula (using n or n – 1) produces an unbiased estimator and why?

 6 Students are often asked to rate their professor, typically on a 1–5 scale, 1 being the lowest ranking 
and 5 being the highest. In an educational psychology class of 25 students, 3 gave their instructor a 
rating of 1, 4 students gave a rating of 2, 8 students gave a rating of 3, 7 students gave a rating of 4, 
and 3 students gave a rating of 5.

(a) What are the mean and median ratings?
(b) What are the variance and standard deviation of the ratings?
(c) What might be a problem with computing the statistics in (a) and (b)?
(d) What are alternative descriptive statistics for those in (a) and (b)?

 7 A charity hired three groups of clowns (balloon-twisters, magicians, and jugglers) to perform at a fund 
raising event. Figure 2.49 shows the number of clowns and the average amount of donations (per 
clown) raised by the three groups. The jugglers raised a total of $800.

Clown type No. of clowns Average $/clown

Balloon-twister 20 75

Magician 20 70

Juggler 80

Figure 2.49

(a) How many clowns were there in total?
(b) What was the total amount of donations raised by the three groups?
(c) How much did the average clown raise?
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 8 Create two distributions with identical means, medians, and ranges. One distribution should be 
platykurtic and the other leptokuric.

 9 There are three sections of quiz scores in your class. One has 10 students and a mean of 7. The 
second has 5 students and a mean of 9. The third has only 5 students and a mean of 5. What is the 
composite or grand mean of the 20 students?

10 If you took the three means in Question 9 (7, 9, and 5) and simply divided by 3 (the number of 
sections), how would that compare with the composite mean computed in Question 9. Why?
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