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CHAPTER 2

COGNITIVE
NEUROSCIENCE

he field of cognitive neuroscience addresses how mental functions are

supported by the brain. This close relative of cognitive psychology is

exploding with new findings as a result of the discovery of methods for
imaging the workings of the living brain. Neuroimaging technologies have
revolutionized the study of the brain, but as will be seen in this chapter, their
effective use requires the behavioral measures, research strategies, and
theories of cognitive psychology. It is also important to understand that the
core questions of cognitive psychology cannot be answered just by viewing
the brain in action. One must first know which cognitive functions, such as
short-term memory, to look for in a highly complex organ. In other words,
cognitive psychology provides the theories that guide the search into the
structures and activities of the brain.

The chapter begins with an introduction to the problem of how the mind
and brain are related to each other. Next, a brief tour of functional neu-
roanatomy is provided, followed by a discussion of the methods used in
cognitive neuroscience. Lastly, the fundamental properties of connectionist
models are presented. As noted in Chapter 1, these are highly simplified
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models of the brain using artificial neurons that mimic some of the basic
properties of real neurons. Connectionist models are now a central tool in
cognitive neuroscience and the broader field of cognitive psychology.

® MIND AND BRAIN

Cognitive neuroscience confronts us with one of the most challenging, if not
the most challenging, philosophical and scientific questions. What exactly is
the relation between the mind and the body? Put differently, how is con-
sciousness produced by the brain? Is a mental state reducible to a physical
state of the brain, or are they separate phenomena?

One view of the relation between the brain and the mind is that they are
one and the same. Materialism regards the mind as the product of the brain
and its physiological processes. The mind does not exist independently of
the nervous system, according to materialism. One version of materialism
contends that it is possible in theory to reduce all cognitive processes to
descriptions of neural events (Crick, 1994). The reductionistic point of view
was well-expressed by Dennett (1991) in these words:

The prevailing wisdom, variously expressed and argued for, is material-
ism: there is only one sort of stuff, namely matter—the physical stuff of
physics, chemistry, and physiology—and the mind is somehow nothing
but a physical phenomenon. In short, the mind is the brain. According
to the materialists, we can (in principle!) account for every mental
phenomenon using the same physical principles, laws, and raw materials
that suffice to explain radioactivity, continental drift, photosynthesis,
reproduction, nutrition, and growth. (p. 33)

Not all versions of materialism contend that the mind can be reduced to
a description of brain states. An alternative version regards mental states as
emergent properties of neural functioning (Scott, 1995). An emergent
property implies that the whole is greater than the sum of its parts. It is
not possible to predict the behavior of the whole just from knowing the
behavior of the parts. In addition, it is necessary to understand how all of the
parts interact with one another to produce the whole. A mental state can be
viewed, then, as a whole that is more than the sum of the individual neurons
firing. Regarding the mind as an emergent property is mentalistic but stays
within the confines of materialism. Mental experience depends on, and is a
functional property of, an active living brain. Sperry (1980) explained the
mentalistic approach to materialism in the following passage:
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Once generated from neural events, the higher order mental patterns
and programs have their own subjective qualities and progress, operate,
and interact by their own causal laws and principles which are different
from and cannot be reduced to those of neurophysiology. (p. 201)

An alternative to materialism contends that attempts to connect mental
states with brain states are mistaken. Dualism holds that the mind is an
immaterial entity that exists independently of the brain and other bodily
organs. This idea can be traced at least as far back as the French philosopher
René Descartes. For a dualist, the attempt to reduce mental states to brain
states is mistaken because it misinterprets correlation as causation. The dualist
account recognizes that a subjective experience is correlated with activities in
the brain. But as all students of psychology are aware, correlation does not
prove causation. Perhaps mind and brain are correlated and have no influ-
ence on each other, or perhaps the mind actually causes brain activity rather
than vice versa. Descartes assumed, as do contemporary dualists, that the
immaterial mind interacts with the brain through a flow of information in
ways not yet understood (Eccles, 1966, 1994; Popper & Eccles, 1977).

Clearly, these deep fundamental questions will not soon be resolved. But
progress in cognitive psychology and cognitive neuroscience does not
depend on resolving them, and measurements at different levels of analysis
are appropriate and necessary. Measurements of brain activity can be useful,
but they are not sufficient by themselves. Behavioral measurements such as
verbally reporting a memory, describing thoughts leading to the solution of a
problem, and making a decision and rapidly pressing a button reveal the
mind in a way that brain activity cannot. Cognitive psychologists, then, often
adopt dualism as a methodological approach to research, as Hilgard (1980)
observed:

My reaction is that psychologists and physiologists have to be modest
in the face of this problem (consciousness) that has baffled the best
philosophical minds for centuries. I do not see that our methods give
us any advantage at the ultimate level of metaphysical analysis. A heuris-
tic solution seems to me to be quite appropriate. . . . That is, there are
conscious facts and events that can be shared through communication
with others like ourselves, and there are physical events that can be
observed or recorded on instruments, and the records then observed
and reflected upon. Neither of these sets of facts produces infallible
data. ... It is the task of the scientist to use the most available tech-
niques for verification of the database and for validation of the infer-
ences from these data. (p. 15)
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For materialists, mental
experiences can be
reduced to states of the
brain, or they may be
an emergent property,
meaning that the mind
is different from the
sum of the activity of
neurons. For dualists,
mental states are
correlated with brain
states and may even
interact with neural
processes, but the mind
is not seen as rooted

in matter.

The cognitive sciences
today recognize that
behavioral techniques
are needed to measure
mental states at the
same time as neural
techniques are needed
to measure brain states.
Neither replaces the
other.
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Figure 2.1.

The basic components of a neuron.

® FUNCTIONAL NEUROANATOMY

The human brain may well be the most complex structure in the known
universe. Consider just a few of the brain’s properties to understand this point
(Sejnowski & Churchland, 1989). A neuron is 1 of about 200 different types of
cells that make up the 100 trillion (10') cells of the human body. As shown in
Figure 2.1, a neuron includes dendrites for receiving signals from other neu-
rons, a cell body, and an axon for transmitting a signal to other neurons via a
synaptic connection. This is an idealized illustration of one of several classes
of neurons that vary in the size, shape, number, and arrangements of their
dendrites and axons. The dendrites of a single neuron may receive as many as
10,000 synaptic connections from other neurons. The central nervous system
is comprised of 1 trillion (10*%*) neurons of all kinds and about 1,000 trillion
(10%) synaptic connections among these neurons (see Figure 2.1).

At a larger scale, the brain is organized into major structures such as
the lobes of the cerebral cortex. Shown in Figure 2.2 are the four lobes
from a lateral view (a), a medial view (b), a dorsal view (c), and a ventral view
(d). These regions are separated in part by anatomical markers called the
central sulcus, lateral fissure, and longitudinal fissure. The lobes of the
neocortex are divided into a left and right hemisphere by the longitudinal
fissure. Large folds in the cortex identify the boundaries among four lobes of
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Figure 2.2.  Four views of the lobes of the cerebral cortex.

the brain. The frontal lobe extends from the anterior of the brain back to the
central sulcus. The temporal lobe lies on the side of the brain, beginning
below the lateral fissure. The parietal lobe extends toward the rear of the
brain, beginning at the central sulcus. The occipital lobe lies at the rear base
of the brain.

Parallel Processing

Another complexity of the brain is its dependence on parallel processing.
Many separate streams of data are processed to support a single cognitive
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Figure 2.3.

The ventral “what” pathway versus the dorsal “where” pathway.

function. Each parallel stream involves a series of stages of processing.
Consequently, it is misleading to think of a cognitive function, such as recog-
nizing your friend across a crowded room, as dependent on just one cortical
region. Although it is known that certain regions in the temporal cortex of
the brain are necessary for face and other object recognition, in a parallel
data stream in the parietal lobe, the location of your friend in the room is
computed simultaneously (Gazzaniga, Ivry, & Mangun, 1998). As shown in
Figure 2.3, a ventral or side pathway projects from the occipital lobe to the
temporal lobe—the so-called “what pathway” The dorsal or top pathway
projects from the occipital lobe to the parietal lobe—the “where pathway.”

Shown in Color Plate 2 in the section of color plates are the results of a
functional magnetic resonance imaging study in which the participants
attended to the identity of a face (by matching it to another face) or attended
to its location in a different matching condition. The red arrow marks the
ventral pathway, and the green arrow marks the dorsal pathway. As may be
seen, there was greater activation in the ventral pathway in the face matching
condition and greater dorsal activation in the location matching condition
(Haxby, Clark, & Courtney, 1997).

Although the brain uses parallel processing extensively, serial processing
is also involved. For example, the streams of data corresponding to facial
recognition and to identifying location both depend on an earlier serial stage
of processing in the visual cortex of the occipital lobe. The occipital, parietal,
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and temporal lobes all are necessary for seeing your friend. No one region is
sufficient by itself, and both parallel and serial processing are necessary.

If the brain is so complex, then why bother trying to understand its struc-
ture and function when the goal is to understand cognition? One answer is
that neuroscience provides converging evidence for the theories of cognitive
psychology. A cognitive theory is best supported if both behavioral data and
neurobiological data lead one to exactly the same conclusion. Going still fur-
ther, it is possible that the results of neuroscience can point theorists in the
right direction so as to avoid blind alleys. As Sejnowski and Churchland
(1989) phrased this point, “Neurobiological data ... provide essential con-
straints on computational theories. . . . Equally important, the data are also
richly suggestive of hints concerning what might really be going on and what
computational strategies evolution might have chanced upon” (p. 343). As
may be seen throughout this book, there are already a number of examples
in which the theories of cognitive psychology can be supported by both
behavioral and neurobiological data.

Brain Structures and Functions

As shown in Figure 2.4, the cerebellum and brainstem lie at the base of
the brain. These are very old parts of the brain that are found in species that
evolved long before mammals and primates. The cerebellum is a large
structure that lies over the brainstem at the rear of the head. The best-known
function of the cerebellum is its role in coordinating complex motor skills.
Signals are sent to the cerebellum regarding the position of the body and the
output of the motor system. It uses this information to maintain posture and
coordinate movements, enabling complex motor skills such as walking,
swimming, and skiing.

Brainstem and Forebrain. The brainstem consists of the hindbrain—the
medulla oblongata and pons—and the midbrain. These are identified as
separate structures because they represent anatomically distinct collections
of neural cell bodies or nuclei. Lying above and around the midbrain are
structures of the forebrain called the diencephalon, which links the cerebral
cortex with the brainstem. This includes two major structures: the thalamus
and the hypothalamus. The thalamus is extensively interconnected with
numerous regions of the cerebral cortex including, but not limited to, speci-
fic sensory areas such as vision and hearing.

The hypothalamus controls internal organs, the autonomic nervous
system, and the endocrine system to regulate functions such as emotion, sex,
hunger, and thirst (Beatty, 2001). For example, it oversees the output of the
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Figure 2.4. A view of the human brain showing the hindbrain and forebrain structures.

pituitary gland in emotional regulation. Endocrine glands secrete hormones
into the bloodstream as a result of signals from the pituitary, the master
gland. These hormones affect the emotional expression of internal feelings
such as anxiety, relaxation, anger, pleasure, happiness, surprise, fight-or-flight
reactions, and sexual responses. For example, the adrenal medulla is an
endocrine gland that releases adrenalin (also called epinephrine). This
hormone acts to increase the rate and force of the heart beat, constricts the
small arteries of the skin and internal organs, dilates the small arteries of the
skeletal muscles, and elevates the levels of glucose in the blood. All of these
prepare the body for the expenditure of energy—fight-or-flight reactions.
The hormones released by the endocrine glands then provides feedback to
the pituitary gland, the hypothalamus, or both so as to regulate their output.

It has long been known that the brainstem, basal forebrain, and dien-
cephalon are essential for maintaining the basic life support mechanisms of
the body. The alertness cycle of waking and sleeping as well as the sensory and
motor signals for the respiratory system, the heart, the mouth, and the throat
are controlled here, for example. Signals are brought to these brain regions via
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nerve pathways or the bloodstream (e.g., pH, hormone, and glucose levels) to
determine the state of body organs such as the heart, blood vessels, muscles,
and skin. The function of these brain structures is to maintain, in a dynamic
way, a condition of homeostasis in which bodily variables are kept within opti-
mal ranges for the support of life. Homeostasis refers to a state of equili-
brium of the internal environment of the body. When there is insufficient rest,
food, water, or heat, for example, these brain structures initiate behaviors that
change the internal state so that it falls back within an optimal range.

A useful metaphor for homeostasis is to compare these life support
systems to a thermostat used to control an air conditioner during the sum-
mer. Temperature readings that exceed the set point used to keep the envi-
ronment comfortable set off a response in the air conditioner. Other
temperature readings have no effect at all. Homeostasis is thus achieved by
maintaining room temperatures around the desired levels, even though it
varies from moment to moment. The brainstem, basal forebrain, and dien-
cephalon act essentially as a massive array of detectors whose values repre-
sent the state of the body from moment to moment (Damasio, 1999).

Limbic System. The corpus callosum is the next structure identified in
Figure 2.4. This is the large band of fibers that connects the right and left cere-
bral hemispheres together. Surrounding the corpus callosum, there is a layer
collectively known as the limbic lobe, shown in Figure 2.5. In ancient primi-
tive species such as the crocodile, most of the forebrain consists of the limbic
lobe (Thompson, 2000). Above the corpus callosum lies the cingulate gyrus, a
band of cortex that runs from the front or anterior portion of the brain to the
back or posterior portion. The fornix extends from the cerebral cortex to the
hypothalamus. The cingulate gyrus, fornix, hippocampus, and other related
structures form a larger functional unit called the limbic system.

The limbic system is characteristic of the mammalian brain. In more
primitive species, such as the crocodile, the limbic forebrain is devoted to
analyzing the smells in the environment and to preparing approach, attack,
mate, or flee responses. Although emotional responses are still among the
functions of the limbic system, in mammals there is less reliance on the olfac-
tory sense of smell. Of even greater interest, some of the structures of the
limbic system have taken on the cognitive functions of learning and memory.
For example, the hippocampus is involved in the learning and storage of
new events in long-term memory.

Cerebral Cortex. The remaining aspect of the forebrain is the cerebral
cortex. The deep nuclei of the diencephalon and basil ganglia are surrounded
by fatty myelinated fibers that appear white in color. The cerebral cortex, on
the other hand, is called gray matter because of the grayish appearance of its
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unmyelinated, densely interconnected neurons. The overall thickness of the
cerebral cortex averages only about 3 millimeters, arranged in layers parallel
to each other and the surface of the brain (Gazzaniga et al., 1998).

The most recently evolved parts of the cerebral cortex, which is well-
developed only in mammals, is called the neocortex. In humans, this com-
prises most of the cerebral cortex. The total surface area of the human
cerebral cortex is 2,200 to 2,400 square centimeters, but most of this is buried
in the depths of the sulci (Gazzaniga et al., 1998). To pack that much neural
tissue in the small space of the human cranium is no small challenge. The
evolutionary solution to this problem was to fold the cortex, creating the
convoluted surface seen clearly in Figure 2.2 presented earlier. Each enfolded
region is a sulcus. Cortical regions within these lobes have been mapped
extensively based on how the neurons in those regions appear in structure
and on how they are arranged with respect to each other.

Nearly half a century ago, brain surgeons began using direct electrical
stimulation of the cortex to identify the regions that needed to be carefully
spared during surgery to control epileptic seizures that failed to respond to
drug treatments. The surgeons needed to remove the tissue causing the
seizures while sparing the tissue that supported cognitive and behavioral
functions such as perception, motor skills, and language. Because the central
nervous system contains no pain receptors, patients remained awake during
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the surgery and reported their subjective experiences. A small electrical
current applied to the cortex during surgery caused no discomfort, but it
did activate motor responses and sensations (Penfield, 1959).

The motor cortex, lying just ahead of the central sulcus, and the sensory
cortex, lying just behind it, were mapped region by region. For example, the
regions of the motor cortex were systematically stimulated, and the hand,
arm, leg, or other movement produced in the patient was recorded. The
same was done for the somatosensory cortex, with the patient verbally
reporting the sensation experienced by each stimulation. In a similar fashion,
the cortical regions that control speech production and comprehension were
identified. Through this research, Penfield (1959) was able to preserve the
regions of the brain that serve spoken language, sensation and perception,
and motor behaviors.

Electrical stimulation of some regions elicited what seemed to be recol-
lections of past experiences. Penfield (1959) found, for example, that stimu-
lating the temporal lobes produced an auditory memory of a song playing in
the patient’s mind, a song heard many years before. However, the interpre-
tation of these observations is unclear. The experiences were rare and not
easy to replicate in the patient. Repeating exactly the same stimulation did
not produce exactly the same memory of the past. Furthermore, how can the
neurosurgeon verify that the experience reported by the individual was in
fact a true memory? It is possible that the stimulation created a false memory,
an experience that only seemed as though it happened in the past but was
actually a new event (Loftus & Loftus, 1980).

The portions of the cortex that do not elicit a sensory or motor response
when stimulated are called association areas (Gazzaniga et al., 1998). For
example, there are association areas in the temporal and parietal cortex that

receive inputs from the primary visual cortex of the occipital lobe. These
regions, as noted earlier, process visual inputs so as to recognize objects and
specify their l()cat%(?ns. Reca'll that multiple regions of the praln are required in the regions of the
for complex cognitive functions such as memory, perception, and language. | .ocortex such as the
Even a sensorimotor skill such as riding a bicycle depends on more than just  sensory and motor
the somatosensory and motor cortical regions. Many regions of the brain are regions on either side of
recruited to maintain balance, to navigate, and to attend to traffic on the road. the central sulcus in the
Indeed, even seeing the road and the locations of cars, buses, and pedestrians parietal and frontal
. . . L L . lobes, respectively.
involves multiple cortical regions in the occipital, parietal, and temporal lobes. Regions critical for

The two hemispheres look like similar structures, but they do not [angyage are located in
perform the same functions in exactly the same way. Instead, the left and the left hemisphere,
right hemispheres have evolved to specialize to a degree in particular cogni- whereas facial
tive functions (Ornstein, 1997). For example, the left hemisphere specializes recogniFion and spatial
in producing and comprehending language. For its part, the right hemi- fggi%e;ss';gtﬁgpjgﬂ on
sphere specializes in recognizing faces and processing the spatial relation-

Some functions are
known to be localized

hemisphere.
ships among objects.
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® METHODS OF COGNITIVE NEUROSCIENCE

The focus here is on three of the most widely used methods of studying the
functions of brain structures. These are the lesion, electrophysiology, and
neuroimaging methods. A treatment of all methods of cognitive neuro-
science is beyond our scope here. Moreover, behavioral neuroscience stud-
ies using animals in learning tasks and recordings of single neurons in the
brain, plus studies in which lesions are created in the brains of animals, fall
beyond the scope of this chapter but are fundamental to the scientific under-
standing of cognition and the brain. For example, the model of long-term
memory that is introduced in Chapter 5 rests as much on animal research as
it does on human research.

Lesions

The oldest method of studying the function of the brain is to examine
individuals who have suffered damage to brain tissue through accidents,
strokes, and diseases of the brain such as Alzheimer’s and Parkinson’s dis-
ease. For example, in the 19th century, Paul Broca reported a case study of
“Tan,” 2 man whose speech ability was reduced to saying the word “tan”
repeatedly as a result of brain damage. Such tragic circumstances have
provided the data for the field of clinical neuropsychology, which seeks to
correlate specific lesions in the brain with specific kinds of behavioral and
cognitive deficits. Lesions have also been experimentally created in rats,
rabbits, monkeys and other mammals to determine the function of the
damaged area. With the exception of psychosurgery performed on psychi-
atric patients, lesions have not been created in humans for ethical reasons.
Indeed, many have questioned the ethics of treating even severely disturbed
psychiatric patients with lesions in the frontal lobe and limbic system.

Until recently, clinical neuropsychology was limited to verifying the exact
location of a lesion only after the death of a patient through postmortem
examination of the brain. For example, Broca discovered that Tan’s brain was
damaged in the left frontal lobe. This became known as Broca’s area when
additional patients with speech disorders turned out to also suffer from
lesions there. Today, the development of neuroimaging methods has allowed
one to detect which regions of the brain have been damaged as the result of
a stroke. This has hastened progress in using lesion case studies to under-
stand how the brain supports cognition.

Lesion research is often based on individual case studies rather than on
group results. Although most research in cognitive psychology is based on
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experiments in which the results for a group of people are averaged together,
this approach can cause problems in cognitive neuroscience. For example, in
a group of stroke victims, the exact locations and extent of the damage vary ool in cognitive
from one individual to the next. These anatomical differences may be impor- heyroscience. The
tant for the conclusions that are reached. Consequently, it has been argued behavior of a patient is
that studying the behavior and cortical damage of one individual is the best related to the specific
approach (Caramazza, 1992). On the other hand, the group studies support areas of the brain
conclusions about the functions of broad areas of the brain that are likely to II;;OaV\iE r;OoEeaSsirggr%ted
generalize to everyone; they are not unique to one case. or stroke. ' '
In using single cases or group studies, the investigator attempts to find

The case study method
of research is a valuable

two tasks that discriminate between the performance of normal controls and
patients with lesions in a particular region of the brain (Gazzaniga et al,,
1998). The objective is to find evidence that one cognitive function is served
by one brain region, whereas a different function is served by another brain
region. To reach this conclusion, the investigator seeks to find double disso-
ciations in which the specific type of brain injury affects performance in two
tasks in different ways.

In general terms, a double dissociation refers to situations in which an
independent variable affects Task A but not Task B, and a different variable
affects Task B but not Task A. One independent variable might be a lesion in
the parietal cortex as compared with normal controls. A second independent
variable might be a lesion in the frontal lobe as compared with normal con-
trols. To illustrate, suppose that Task A measures planning in problem solving
and Task B measures locating objects in space. If it can be shown that frontal
lobe damage disrupts planning performance relative to normal controls but
has no effect on locating objects in space, then a single dissociation has been
demonstrated (see Figure 2.6). If, in addition, it can be shown that the pari-
etal damage affects locating objects in space but not planning in problem
solving, then a double dissociation has been established. The double dis-
sociation isolates planning as a function of the frontal lobe and locating
objects in space in the parietal lobe.

Electrophysiology

Electrophysiology reveals the activity of the brain by measuring the elec-
tric and magnetic fields that are generated by neuronal networks in the brain.
As noted in Chapter 1, the electroencephalogram (EEG) is a record of the
voltage changes created by the large populations of neurons activated within
specific cortical regions. These brain waves can be measured with electrodes
positioned on the scalp because the skull and scalp passively conduct the
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Figure 2.6.

Hypothetical results of studies illustrating a single dissociation and a double
dissociation.

electrical currents generated by the brain. The EEG led to the discovery that
different brain wave patterns are correlated with different states of con-
sciousness such as wakefulness, deep sleep, and dreaming.

The EEG provides a continuous measure of global changes in brain activity
as a person carries out cognitive tasks. It permits one to study brain activity
even in long and complex tasks. However, one drawback to the method is
that changes in EEG activity caused by a particular stimulus are difficult to
observe. Many responses are occurring simultaneously that have nothing to
do with the particular stimulus of interest. Often times, investigators would
like to know how a cortical region responds to the presentation of single
stimulus such as a flash of light or the presentation of a word or picture.
To this end, it is necessary to present the stimulus of interest on numerous
trials. The EEG records from the trials are averaged together, making certain
they are aligned with respect to the exact moment of stimulus presentation.
All brain responses that are irrelevant to the stimulus are washed out of the
picture through this averaging process, leaving only the response that the
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Figure 2.7.  An idealized P3a ERP elicited 300 milliseconds after the presentation of a novel
unexpected visual event. By convention, positive voltage changes are plotted
below the x axis.

investigator is seeking. An EEG signal that reflects the brain’s response to
the onset of a specific stimulus is called an event-related potential (ERP)
or simply an evoked potential.

To illustrate ERPs, consider the response of the brain to the presentation
of a novel stimulus. An ERP called the P300 component (also known as the
P3a) is the positive peak in the EEG signal that occurs 300 milliseconds after
onset of an attention-getting stimulus, as shown in Figure 2.7. This compo-
nent arises from an individual orienting to a novel stimulus and can be read-
ily observed when recording from regions in the frontal lobe (Knight, 1996).
Researchers use an “odd ball” task in which participants attend and count to
an infrequent stimulus (e.g., red dot) while ignoring the frequent occur-
rences of another stimulus (e.g., green dot). In normal individuals, a novel
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An ERP measures the
activation of large
numbers of neurons in
a cortical region by
detecting positive and
negative voltage
fluctuations on the
scalp in response to a
stimulus event. Multiple
ERPs occur as time
passes after the event is
first registered.

red dot elicits a P3 ERP associated with detecting and remembering its
occurrence. It turns out that this response is absent in alcoholics, however,
even when they have quit drinking. Abstinent alcoholics display a diminished
or delayed ERP in the odd ball task, reflecting a long-term impairment in the
processing of novel information (Rodriquez, Porjesz, Chorlian, Polich, &
Begleiter, 1999). The effect does not reflect alcohol intoxication per se
because the participant is sober when tested.

Moreover, the novelty deficit indexed by a P300 response might not even
be related to the effects of chronic alcohol consumption per se. The children
of alcoholics who have not yet consumed alcohol also show the same deficit
in the odd ball task. Thus, this cognitive deficit may reflect a genetic predis-
position to ignore novel stimuli rather than an alcohol-produced deficit. Of
great importance, the ERP deficit can, in theory, be used as a marker of the
genetic disorder. Children and adolescents who display this ERP deficit are
vulnerable to alcohol dependence and should avoid ever starting to drink.

EEG and ERP provide information about the temporal dynamics of
neural activation in the millisecond range. Such electrophysiological mea-
sures of brain activity show excellent temporal resolution (see Figure 2.8).
But it is not possible to identify the specific location, within a few millimeters,
of the neuronal networks that generate the evoked potentials and fields. To
pinpoint the location of neuronal activity, other methods are required.
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Figure 2.9.
SOURCE: Posner and Raichle (1994).

Neuroimaging

Neuroimaging provides a measure of the location of neural activation
generated during a cognitive task to within 3 to 10 millimeters. Two tech-
niques now in wide use provide an indirect measure of more localized brain
activity as compared with electrical scalp recordings. The first of these is
positron emission tomography (PET). PET uses injections of radioac-
tively labeled water (hydrogen and oxygen 15) to detect areas of high meta-
bolic activity in the brain before the radioactive substance decays completely
and is no longer radioactive (about 10 minutes). A person undergoing a PET
scan is shown in Figure 2.9. PET images require multiple scans and allow the
reconstruction of a three-dimensional picture of activated regions.

The second technique is called functional magnetic resonance
imaging (fMRI). With fMRI, a powerful magnetic field is passed through the
head to reveal detailed images of neuronal tissue and metabolic changes.
Both PET and fMRI are based on the principle that as areas of brain increase
their activity, a series of local physiological changes accompanies the activity
and provides a way to measure it (Buckner & Petersen, 2000). PET works by
detecting increases in blood flow in the vascular network that supplies a
population of neurons. fMRI works by detecting changes in the concentra-
tion of oxygen in the blood. Thus, both methods reveal how the brain

e

A PET scanner at the Washington University laboratory in St. Louis, Missouri.

PET and fMRI provide
neuroimages of the
living brain as it
processes information
in a cognitive task. An
increase in brain
activity in a region is
detected by increases in
blood flow with PET and
by increases in blood
oxygenation with fMRI.
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supports behavior in a cognitive task by measuring local changes in blood
properties. Because changes in blood flow and oxygenation take a few
seconds to occur, the neuroimaging methods do not provide the temporal
resolution found with evoked potentials (see Figure 2.8). The color plate
section of the book includes several examples of PET and fMRI images.

Interpreting Neuroimages. A high degree of neural activation in one region
in the brain provides evidence that it is necessary for the cognitive function
under investigation. It does not mean that the region is sufficient, all by itself,
for the function in question. The brain processes multiple streams of data in
parallel, and multiple structures are typically activated in any task. Whether
all of the necessary regions turn up in a neuroimaging study depends on the
control task used in the subtraction method introduced in Chapter 1. If the
control task used to subtract out the “irrelevant” activation happens to tap
the other supporting areas, then the very design of the study prevents them
from showing up in the final results. Determining the right control task is not
a trivial concern.

Once the functionality of a given brain region is known, it is possible to
use neuroimaging to identify which processes are invoked by a given task
(Smith, 1997). For example, it has now been established by converging
evidence from lesion data, direct electrical stimulation of the cortex, and
neuroimaging findings that Broca’s area mediates speech. If a task shows a
10% increase in blood flow in this left frontal area, then one can conclude
that speech was produced even if it was subvocal without the participant
uttering a single word. Such implicit speech might well occur, for example,
when a participant silently rehearses a list of words or silently plans a solu-
tion to a problem. Changes in blood flow can detect this cognitive activity
without requiring the participant to think aloud as in verbal protocols.

® CONNECTIONIST MODELS

As explained in Chapter 1, the digital computer provided a convenient
analogy for understanding the architecture of the mind. Symbolic models
were developed that shared key features in common with digital computers.
Computations on information received by the senses were carried out in
discrete serial steps such as encoding, memory storage, decision making, and
response selection. A central processor used rules to process symbols similar
to the rules used in computer software to process numbers and words. The
digital computer helped to legitimize the study of the mind by providing an
explicit model of the hidden operations of cognition that behaviorists viewed
as inherently unavailable to scientists.
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On the other hand, there are potentially important differences between
the brain and a digital computer. As discussed earlier in the chapter, the brain
performs computations in parallel and not in series. A single cognitive func-
tion is supported by parallel processing of multiple streams of data.
Furthermore, it is not entirely clear whether the brain represents and
processes symbols in the same way as a computer does. Although it makes
sense for a computer to represent, say, a word as a unitary symbol, the brain
may use a distributed representation. Recall from Chapter 1 that a connec-
tionist representation of a word is distributed over multiple units, each of
which codes one feature relevant to the word’s meaning. Connectionist
models are also called parallel distributed processing (PDP) models to
emphasize these biologically inspired features that mimic the brain.

For example, consider how “coffee” could be represented in a connec-
tionist model (Smolensky, 1988). It might include a node that codes “brown
liquid” and another for “burnt odor.” It would also include units that code
features for different scenarios in which coffee appears. For example, nodes
for “cup of coffee” would code for “upright container,” “hot temperature,” and
“brown liquid contacting porcelain” as well as those already noted. Still other
nodes would code features needed for a different scenario such as “can of
coffee” (e.g., a node for “granules contacting tin”). Where in such a distributed
representation is the symbol for “coffee”? It is everywhere and nowhere at the
same time. All of the nodes that participate in coding the features of coffee
together constitute the representation. Yet nowhere can one point to a speci-
fic node and say that this node, and not that one, is the symbol for coffee.

Neural networks are biologically inspired in the sense that they mimic
the parallel computations of the brain and the use of distributed representa-
tions of knowledge. At the same time, neural networks are highly artificial
because they are blatant but intentional simplifications of the brain. Each
node is like an idealized neuron, and each connection is like an idealized
synapse. They display none of the complexities of real neurons and synapses.
The neural network operates with a very small number of nodes as compared
with the billions found in a real brain. Finally, the network is designed to
model a single function of the brain at a time. It is not intended as a complete
replication of the brain, nor would this be of much value, for then the model
would be so complicated that scientists would not understand it any better
than the brain itself.

Basics of Neural Networks

Components of Neural Networks. Connectionist models attempt to under-
stand the architecture of human cognition by using highly simplified, idealized
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Figure 2.10. Two types of connectionist neural networks: a three-layer feedforward network

(left) and a fully recurrent network (right).

models of the brain itself. Such models are composed of many nodes or
nodes that behave in ways that mimic neurons. As with neurons, the nodes
gather input from other nodes. Not all nodes are connected to all other
nodes. In a typical model, there is a layer of input nodes that mimic sensory
receptors, receiving information from the environment (see the left side of
Figure 2.10). Another layer of nodes mimic motor neurons and provide a
response from the network. Sandwiched in between is a hidden layer that
receives information from the input layer and sends forward information to
the output layer.

The connection between two nodes mimics a synapse between two
neurons. In some networks, the connections between nodes are unidirectional.
In other cases, the connections are bidirectional, meaning that feedback is
provided to the node that sends forward information. A node can also be con-
nected to itself, providing what is called recurrent feedback. A fully recurrent
network with bidirectional connections is shown on the right in Figure 2.10.

Just as some synaptic connections are excitatory and some are inhibitory,
positive or negative weights are associated with each artificial synapse in the
neural network. The weight for a given connection between two nodes
changes in value as the network processes inputs, gives outputs, and pro-
vides feedback. Each connection weight represents the knowledge state of
the network; mathematically, the weight is a multiplier of the output value of
the sending node.
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The net input to node 7 is given by this equation:
=net, =2, w,a,

The weight between node 7 and node/ is given by w,, and the activation level
of node j is given by a, To calculate the net input to node  one sums the
product of weight times activation for all node sources .

Thus, if node 7 receives input from only one node whose output equals
+1 and whose weight equals 0.5 (an excitatory connection), then its net
activation equals 0.5. But if node 7 also receives input from an inhibitory node
whose output equals +1 and whose weight equals —1.0 (an inhibitory con-
nection), then its net activation would equal —-0.5. In terms of the formula,

= [(+1*0.5) + (+1 * —1.0)] =—05.

Dynamics of Neural Networks. Each node responds to its summed input
based on an activation function. The response of the neuron is given on the
y axis for different input values, ranging from negative values to positive
values. A linear function, for example, would gain strength in direct propor-
tion to the strength of the inputs. This would mean that the response is always
graded, gaining strength in direct relation to the strength of the inputs.
Instead, neural networks typically use a nonlinear activation function such as
is provided by the sigmoid function shown in Figure 2.11. Note that it mimics
the all-or-none response of real neurons for any input value less than zero and
for large positive inputs. That is, for negative inputs the response is 0.0, and
for large positive inputs the response is 1.0. However, graded responses,
falling between 0.0 and 1.0 in value, are obtained when the inputs are small
positive values, between 0 and +5. The nonlinear response of this activation
function is a crucial feature of how connectionist models achieve interesting
behaviors (Elman et al., 1996). Each node behaves in a categorical all-or-none
fashion under certain circumstances and in a sensitive graded fashion in
others.

Logical Rules. To grasp how neural networks behave, it is useful to consider
how simplified networks implement logical rules. Suppose that there are two
input nodes and a single output node, as shown in the first two cases in
Figure 2.12. This is a two-layer network with no hidden nodes. Suppose fur-
ther that the activation function is strictly all-or-none, assuming output values
of only 0 or 1. If input activation is less than or equal to 1, then node output
is “off,” taking a value of 0. If input activation exceeds 1 by any amount, then
the node output is “on,” taking a value of +1.

e

The connection weights
in a neural network
represent its current
state of knowledge;
mathematically, the
weights are multipliers
of the output values of
all nodes sending
information. Some
weights are excitatory
(positive values), and
some are inhibitory
(negative values). The
net input to a given
node is the sum of

all excitatory and
inhibitory input
connections.




kellogg02.gxd 7/11/02

10:27 AM Page 46 $

46 @ SCOPE AND METHODS

Output Activation

1.0

0.5

Input

Figure 2.11.

The sigmoid activation function typically used to relate inputs to output activation
in each node of a neural network.

In the first case in Figure 2.12, the input patterns presented to the two
nodes are shown below the two-layer network. Each input node sends an
activation level to the output node equal to +1. The weight of each connec-
tion is 0.5. The net activation in this case is equal to 1.0, which triggers an
“on” response from the output node. If the input from either node A or node
B is less than +1, then the output is necessarily less than +1. This network
models the logical AND relation. Its output is “on” if the input node on the
left is +1 AND the input node on the right is +1; if one input or the other is
0 or if both inputs are 0, then the output is “off.” In the next case, the weight
for each node is changed to 1.0, and now a new logical rule is implemented.
The OR rule stipulates an “on” output if one input or the other is +1 or if both
inputs assume a value of +1. In all three situations, the net activation of the
output node will equal or exceed 1.0.

The AND and OR rules are easily modeled with two-layer networks.
Input patterns that are highly similar to one another give rise to the same
output in both of these rules. They differ only in whether a single input node
with 0 activation is grouped with the case of both nodes being 0 (OR), on the
one hand, or whether a single input node with +1 activation is grouped with
the case of both nodes being +1 (AND). A much more difficult logical rule is
represented in the third case in Figure 2.12. This is called the Exclusive OR
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AND OR XOR
output © output © output
1.0 1.0
5 5 1.0 1.0 hidden
1.0
input (B) input (B) input (A)
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B C C B C
0
0
1
1

Figure 2.12. Two-layer neural networks can compute conjunction (AND) and inclusive
disjunction (OR) logical rules. A hidden layer must be added to compute the
exclusive disjunction (XOR) rule.

or the XOR rule. Now, similar inputs are not treated similarly at the output
level. If one input or the other input, but not both, is +1, then the output is
“on.” If neither input is 0 or if both inputs are 0, then the output is “off.” Here,
then, highly dissimilar patterns must be categorized together. Take a few
moments with assigning weights to the two-layer network to satisfy yourself
that it fails to solve the XOR problem.

As you can verify, it is easy to get the network to produce an “off” or 0 out-
put when the input patterns are (0, 0) and (1, 1). This can be achieved by set-
ting the weights for each connection to 0. But this causes major problems in
achieving the desired result for patterns (0, 1) and (1, 0). In these cases, we
need a weight large enough so that the net activation reaches +1 when only
one of the input nodes equals +1. By setting the weight at, say, +1, we solve
our problem with these two patterns but foul up the results for the (0, 0) and
(1, 1) cases.

The solution to the XOR problem illustrates how hidden layers can cause
neural networks to behave in counterintuitive ways that are not based on
similarity (Elman et al., 1996). In the third case in Figure 2.12, one hidden
node is added to the network used to solve the AND problem. The connec-
tion weight between each input node and the hidden node above it is set at
+1. However, the opposite hidden node is given an inhibitory connection
with a weight equal to —1. The connection weights from the hidden nodes
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The hidden layer allows
neural networks to
solve the XOR problem,
responding to similar
inputs in different ways.
It is akin to an abstract
internal representation
of information.

to the output nodes are excitatory with weights equal to +1. Running the test
patterns (0, 1) and (1, 0) now yields outputs of +1, as required by the XOR
rule. For example, an input of 1 to either one node or the other results in an
“on” response from the output node. Note what happens to this network
when both inputs are +1, however. In this case, the inhibitory connections to
the hidden layer effectively cancel the input values in computing net activa-
tion. The net of the nodes in the hidden layer is 0, resulting in an “oft”
response at the output node.

The hidden layer in a neural network provides abstract internal repre-
sentation of the inputs. By using inhibitory connections to the hidden layer,
the network treats dissimilar inputs (0, 0) and (1, 1) as alike and similar
inputs (0, 0) and (0, 1) as different. The central point is that adding a hidden
layer augments the power of neural networks to produce complex and often
counterintuitive behaviors.

Back-propagation of Error. The XOR problem illustrates that, with the right
architecture and weights assigned, a difficult logical rule can be modeled with
a neural network. With these simplified networks, the modeler can deter-
mine the correct combination of weights that should be used to produce the
desired output. As more and more nodes are added to the network and as
more complex relationships between the inputs and outputs are needed, the
number of computations needed for finding the right weights is too great.
What is needed is a way for the neural network to learn on its own, slowly
over long periods of time if necessary, a good combination of weights. So,
how can neural networks learn through experience which weights should be
adjusted to achieve a particular result?

A common algorithm or rule for teaching a neural network is called
back-propagation of error. It is an illustration of supervised learning in
which the specific outputs desired are known and serve as teaching values
that provide feedback. Unsupervised learning can also occur in neural
networks, but they fall outside the scope of this brief introduction. Another
limitation of this discussion is that it illustrates only Hebbian learning. Hebb
(1949) posited the following:

When an axon of cell A is near enough to excite a cell B and repeatedly
or persistently takes part in firing it, some growth process or metabolic
change takes place in one of both cells such that A’s efficiency, as one of
the cells firing B, is increased. (p. 62)

Learning in neural networks is Hebbian when it takes place by altering the
synaptic weights between A and B such that a future activation of A increases
the probability of activating B.

e



kellogg02.gxd 7/11/02 10:27 AM Page 49 $

Cognitive Neuroscience @ 49

The back-propagation algorithm is a procedure for training neural
networks by returning an error signal from the output layer backward
through hidden layers to the input layer. It aims to find the combination of
weights that minimizes the error function. Back-propagation starts with the
idea of comparing the weights from input nodes to those from output nodes
so as to reduce the difference between the target output and the actual out-
put (Elman et al., 1996). Because a target for the output layer is known, it is
straightforward to evaluate the weights leading to these nodes and calculate
how they should be changed. For the hidden layer, there is no specified tar-
get. How can one decide how much error is arising from a node weight at the
hidden level if the desired output from that level is unknown? The answer is
back-propagation.

The error is first calculated at the output level; the activation of an out-
put node is subtracted from the desired output activation, called the target error is a kind of
or teacher value. Next, the weights leading into that node are adjusted so that supervised learning in
in future steps it is more or less activated, depending on the direction which the specific
needed to reduce the error. This is done for all weights leading to the output outputs desired are
node. If more than one output node is in the network, then these steps are knowp and serve as
repeated for each one. Finally, the “blame” for these output errors is assigned €aching values that

_ . , provide feedback to

backward one level to the weights from the input layer to the hidden layer.

the hidden layer and
This blame is apportioned based on (a) the errors observed on the output jnpyt layer.

Back-propagation of

nodes to which a given hidden node is connected and (b) the strength of the
connection between the hidden node and an output node. Thus, the error
signal is propagated backward through the network to adjust the weights at
the hidden layer. Although back-propagation is a useful technique, there is
no guarantee that the optimal set of weights will be learned. However, a
satisfactory, if not perfect, set of weights can often be found if learning takes
place slowly by making only small changes to the weights with each error.

Modeling English Verb Acquisition

Armed with the basic concepts of neural networks, it is helpful to exam-
ine how a connectionist model explains real findings on a problem of central
importance in the field, namely, language acquisition in children. It is well-
known that children move through three stages in learning the correct way
to produce the past tense of English verbs. Some English verbs are regular,
meaning that a suffix -ed is simply added to the verb stem to produce the past
tense (e.g., show/showed). Other English verbs are irregular in various ways.
In some cases the past tense form is similar to the present tense (e.g.,
grow/grew), and in some cases it is even identical (hit/hit). In other cases, the
past tense bears no obvious sound or spelling relation to the present tense
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Connectionist or PDP
models of the brain are
implemented as neural
networks where each
node acts as a
simplified neuron.
Knowledge
representations are
distributed across
multiple nodes, and
information is
processed in parallel—
two features that seem
to be true of the brain.

(e.g., go/went). Early in language acquisition, children begin to produce
some irregular past tense forms correctly, saying “went” instead of “goed.”
However, as children learn more and more verbs and discover that regular
verbs follow a simple rule of adding -ed, overgeneralization errors begin to
intrude. That is, the -ed rule is overgeneralized to the irregular verbs already
learned. It is as though children unlearn the correct forms of the irregular
verbs and mistakenly learn, for example, goed. Finally, with additional expo-
sure to the language, the overgeneralization errors drop out and children
produce both regular and irregular verbs with few if any errors.

Rumelhart and McClelland (1986) examined how a two-layer network
learned the past tense. A set of input nodes are connected directly to a set of
output nodes with no hidden layer. The input is a phonological or sound rep-
resentation of the verb stem, and the output is the phonological representa-
tion of the corresponding past tense of the verb. Each node represented a
specific aspect of the sound representation in both the input and output
layers. So, various clusters of these nodes were able to represent the differ-
ent sound patterns needed to produce the verbs and their past tenses
(e.g., /g/, /o/ and /w/, /e/, /n/, /t/). For example, some output nodes repre-
sented the -ed suffix used for regular verbs. Rumelhart and McClelland used
back-propagation of error to teach the network the correct English past tense
for all of the verbs.

More than 400 verbs typical of daily English usage (i.e., mostly regular
with some irregular) were used to train the network. The results showed that
the percentage of correct past tense verbs output by the model increased
rapidly for regular verb forms early in training and then leveled off. Although
it continued to improve with extensive training, the gains were quite small.
Because most of the verbs were regular, the network quickly settled into
adding the -ed suffix. Although this was beneficial for learning the regular
verbs, it caused problems for learning the irregular verbs. Early on, perfor-
mance improved rapidly for the irregular verbs also but then showed a sharp
reduction in the percentage of correct forms. The point where this occurred
coincided with the point where the network was nearly always correct with
the regular verb forms. In other words, the network was likely to produce
“goed” or “hitted” by mistake, showing overgeneralization errors. These mis-
takes generated large error signals that decreased the likelihood of turning
on the -ed output nodes the next time. So, learning the irregular verbs inter-
fered with learning the regulars and vice versa. Slowly, and only after exten-
sive additional training, the network also was able to learn the correct forms
for irregular verbs as well as for regular verbs. Thus, the well-established
phenomenon of overgeneralization of regular verb forms was duplicated in a
simple neural network using a single learning process.
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SUMMARY

1. The relation of brain states to conscious states is an unsolved philo-
sophical and scientific problem. The working assumption of many cogni-
tive neuroscientists is materialism, which reduces mental states to brain
states or regards mental states as emergent properties of the brain.
Dualism is an alternative point of view that regards brain states and
mental states as different entities altogether, although they may interact
with one another. For example, a mental state might cause a change in the
state of the brain or vice versa. To conduct research successfully in cogni-
tive neuroscience, behavioral techniques are needed to measure mental
activities (e.g., verbal reports), and neural recording techniques measure
states of the brain. The aim is to relate these two parallel sets of data and
not to replace behavioral measures with neurological measures. In other
words, cognitive scientists adopt a methodological dualism to make
progress in the field.

2. The human brain may well be the most complex structure in the
known universe. The central nervous system contains on the order of 1 tril-
lion neurons and about 1,000 trillion synaptic connections among these
neurons. The organization of the brain is highly parallel, with many separate
streams of data being processed to support a single function such as face
recognition. Despite the complexity of interconnections, it is not the case
that every neuron is connected to every other neuron through one pathway
or another. Synaptic connections are either excitatory or inhibitory in their
effect on the next neuron. The goal of cognitive neuroscience is to use data
about the brain to help decide among alternative theories of perception,
attention, memory, language, and other cognitive functions.

3. The cerebellum and brainstem are ancient structures and evolved
long before mammals and primates. Lying above and surrounding the brain-
stem are the diencephalon and basal forebrain. These structures provide the
basic life support functions of the body such as respiration and heart rate.
They maintain a state of equilibrium in the internal environment of the
body, called homeostasis. The limbic system lies in the next layer of neural
structures and is similar in all mammals. The hippocampus is part of the
limbic system and plays a critical role in emotion, learning, and memory.
Surrounding the limbic system is the cerebral cortex. It appears gray in
color, is arranged in layers, and averages only about 3 millimeters in thick-
ness. Within the most recently evolved layer, the neocortex, enormous
numbers of neurons are densely packed and folded, giving the brain its
convoluted appearance on the surface. About 75% of the trillion neurons in
the central nervous system are neocortical.
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4. The neocortex is symmetrically divided into two hemispheres.
Within each hemisphere, the frontal, temporal, parietal, and occipital lobes
are distinguished. Some regions serve specific sensory and motor func-
tions, whereas others—the association areas—play a role in numerous
cognitive functions. Some functions are lateralized, meaning that one
hemisphere plays a special role. For example, regions critical for language
are located in the left hemisphere, whereas those involved in facial recog-
nition and spatial processing depend on regions in the right hemisphere.
It is incorrect to think of a cognitive function as completely lateralized,
however. The right temporal lobe is necessary for the recognition of faces,
but the visual processing of the faces in the left and right occipital lobes is
also necessary.

5. Lesions or damage to cortical regions provide one way to study the
cognitive functions served by the brain. Cognitive neuroscientists seek
double dissociations in which one kind of lesion disrupts performance on
Task A but spares performance on Task B, whereas a different kind of lesion
disrupts Task B but spares Task A. Double dissociations suggest that the two
brain regions damaged by the lesions support different cognitive functions,
as measured by Tasks A and B. Electroencephalograms (EEGs) provide con-
tinuous recordings of the voltage changes created by large populations of
neurons within a specific cortical region. An EEG signal that reflects the
brain’s response to a specific stimulus is called an event-related potential
(ERP). Neuroimaging methods work by detecting changes in the blood sup-
ply serving the metabolic needs of activated neurons. Positron emission
tomography (PET) measures blood flow and functional magnetic resonance
imaging (fMRI). Using the method of subtraction, cognitive neuroscientists
attempt to isolate the neural activation caused by a particular cognitive
function.

6. Connectionist or parallel distributed processing (PDP) models are
computer simulations that mimic basic features of the brain. The nodes of a
PDP model can be activated in an all-or-none manner, and connections to
other neurons can be either excitatory or inhibitory, as in real neurons. The
representation of knowledge is distributed over many neurons. The connec-
tionist architecture may include an input layer, an output layer, and a hidden
layer that generates counterintuitive behaviors from the network. Neural
networks can learn to provide the correct output from input received by
modifying the strength of the connections among nodes. A typical way of
learning relies on back-propagation of error signals from the output layer to
earlier layers. Over time, the system adjusts connection weights to minimize
the amount of error.
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