
13

THE BASICS OF 

RECURRENCE 

ANALYSIS—

UNIVARIATE RQA

Now that recurrence analysis has been conceptually introduced, we want to 

expand on this by introducing the different steps that are necessary in order 

to perform the analysis and to interpret its results. Also, we will introduce  

readers to the basic, univariate Recurrence Quantification Analysis (RQA), 

which allows us to quantify the dynamics of the temporal patterns of a single 

time series. Most of these steps—parameter estimation, parameter selection, 

and interpretation of the RQA outcome measures—are very much the same 

for all the different variants of recurrence analysis that are introduced in the 

following chapters. In case one of these variants demands a somewhat differ-

ent approach to these steps, you will find a section describing these differences 

with the respective chapters covering the different recurrence-based analyses.

In the rest of this chapter, we will first describe the parameters that 

must be estimated before we can conduct RQA and provide guidelines for 

their estimation. As we will see, the necessity for estimating those param-

eters directly follows from the dynamics of the time-series data that one is 

interested in analyzing. In Chapter 7, we will discuss how parameter estima-

tion for individual time series differs from parameter estimation for sample 

data—that is, multiple instances of time series that one is interested in treat-

ing as a group. Finally, we will summarize more exhaustively and in detail 

all RQA measures and their most common interpretations in the context of 

applications in psychology and the social sciences. Also, because recurrence-

based analysis always yields multiple output measures, we will summarize 

rationales for selecting specific measures in relation to specific research ques-

tions, as well as approaches to combine and reduce the number of individual 

outcome measures down to a manageable number of variables for inferential 

statistical analysis. This will be elaborated on in Chapter 7 as well.
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14  Recurrence-Based Analyses

PARAMETER ESTIMATION

In the description of a recurrence plot presented in Chapter 1, we used a sim-

plified example of letters taken from a poem. Here the poem is treated as an 

ordered (time) series, and the letters in this case can be thought of as values of 

a categorical variable. The recurrences in this example are repetitions of iden-

tical letters along the verse, that is, perfect matchings, or identities, between 

such values. The example is simple and intuitive.

However, time series are usually somewhat different objects than a series 

of letters. The time series we deal with often take the form of real-valued, 

regularly sampled measurements of a phenomenon of interest. The second-

by-second change of stock market indices, daily number of infected people 

during a pandemic, or interactive behavior of small groups measured by 

motion coding over time are examples of time series arising in the study of 

certain phenomena or systems in economics, epidemiology, or psychology. In 

such cases, the variable measured in time is a real number.

When this is the case, we may find out that time series have only very 

few values that are identical, which may be for example an obvious conse-

quence of measurement noise, and this has a direct impact on what counts 

as a recurrence and how a recurrence plot is built. First of all, since the 

values in such series are continuous, the definition of what is recurrent 

should not be based on perfect matching (after all, depending on the level 

of precision in decimal places for those values, perfect matching may actu-

ally never occur) but rather on some measure of similarity or dissimilar-

ity, of which the most commonly used is typically the Euclidean distance 

between them.

For example, when comparing two values at two different time points in 

a series, let’s say 126.12 and 125.65, we may decide that the distance in value 

between them (here  ∆ = 0.47 ) is small enough to be counted as a recurrence, 

while this may not be the case for two values like 125.12 and 50.31, where  

∆ = 74.81 —here the distance seems to be too big. This is done by setting a 

threshold value, above which two values are considered to be too dissimilar 

or distant to count as recurrent and, hence, are not represented as points in a 

recurrence plot. The value of the threshold (or radius1) then, is one of the first 

parameters we will need to consider in recurrence analysis when shifting to 

real-valued, continuous time series.

Furthermore, another fundamental issue is to establish the dimension-

ality of the system that generates the observed series and, hence, its phase 

space reconstruction (in the literature the term phase space is also sometimes 

referred to as state space), a procedure that is at the foundation of nonlinear 
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Chapter 2  •  The Basics of Recurrence Analysis—Univariate RQA  15

time series analysis. This has to do with the number of factors—and their 

kind of interaction—that drive the system dynamics. In other words, within 

a dynamical view, such time series are seen as the manifestation and reflect 

the coupled behavior of many latent influencing factors such as monetary 

policy and demand for a product, infectiousness of a virus and containment 

measures, the task that participants must achieve and their skill at task per-

formance, and so on.

In simple terms, when analyzing a single observed time series, we can 

think of it as a single dimension (variable) of a more complex dynamical 

system that generates it. Several variables or factors nonlinearly related 

between them may be at the basis of the phenomenon of study, although 

we may actually be able to measure or have access to only one of them. 

However, the oscillations in time, that is, the dynamic behavior in that 

single dimension, encapsulate the dynamics of all the other dimensions of 

the system, as they are obviously intrinsically connected and influencing 

each other.

Let us consider the Lorenz system (Lorenz, 1963). This example system 

does not originate in the social sciences but has been widely used as a paradig-

matic example of complex nonlinear dynamical systems and often appears 

in other texts illustrating, for example, how recurrence analysis works. In 

particular, it is a good, transparent example of how this method deals with 

the problem of dimensionality of systems dynamics. The system has its  

origin in weather forecasting and is based on the physics of fluid dynamics. 

Admittedly, such kinds of equations (see eq. 2.1) are hardly found in model-

ing phenomena from psychology, sociology, or economics. However, the sys-

tem reflects general properties of dynamical systems and has become a model 

system that can be used to conceptualize and derive predictions on what to 

expect from observable phenomena within the social sciences, when we try 

to understand them within the framework of dynamical complex systems 

(Favela, 2020). For example, the Lorenz system and similar dynamic systems 

have been used to generate predictions of phase-transitions when humans 

gain new insight with regard to the solution of mathematical problems 

(Stephen et al., 2009), when readers adjust their cognitive processes while 

switching from one reading task to another (Wallot et al., 2019), or when 

capturing processes of change in human behavior, such as psychotherapeutic 

processes (Schiepek & Strunk, 2010).

The Lorenz system is a nonlinear dynamical system of three coupled 

ordinary differential equations (eq. 2.1), which has been proposed as a sim-

plified model of atmospheric convection processes in a fluid layer uniformly 

warmed from below and cooled from above, and it models the rate of change 
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16  Recurrence-Based Analyses

in time of three quantities:  x  is proportional to the rate of convection,  y  to the 

horizontal temperature variation, and  z  to the vertical temperature variation:

   { 

 x ̇   = σy − σx

   y ˙   = − xz + rx − y   
 z ̇   = xy − bz

  

 

    (eq. 2.1)

As can be seen from eq. 2.1, the three differential equations constitute a 

system since the time derivative functions of each variable depend on values 

of the other variables. Moreover, the system contains two nonlinear terms 

(i.e., the dynamics are nonlinear) in  xy  and  − xz , while  σ  (sigma),  r , and  b  are 

fixed parameters of the system.

The dynamics (i.e., time-dependent trajectories) of the Lorenz system 

span a three-dimensional state space (Figure 2.1a), since the system is defined 

by three variables, but as we have seen previously, the time dependent val-

ues on each dimension are nonlinearly dependent on the values of the other 

two dimensions. Now, suppose that we have access to the values of one of 

these dimensions only—and this is the time series we observe. Obviously, the 

trajectory or time-dependent representation of this single variable or dimen-

sion (Figure 2.1b) looks different than the three-dimensional dynamics of the 

Lorenz system as a whole (compare Figure 2.1a and Figure 2.1b). However, 

remember this trajectory is also determined or driven by the other variables, 

to which in some situations we may not have access.

FIGURE 2.1 ■    Phase Space Portrait of the Lorenz System

Note. Part (a) represents the actual attractor of the Lorenz system as derived from the 
integration of eq. 2.1 and plotted as a trajectory in the 3-dimensional space defined by 
the three variables x, y, and z. Part (b) represents the dynamics of the x-dimension of the 
Lorenz system over time, that is, a one-dimensional trajectory.
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Chapter 2  •  The Basics of Recurrence Analysis—Univariate RQA  17

One fundamental and remarkable result of nonlinear dynamic systems 

theory (Takens, 1981) is that, in principle, it is possible to reconstruct the full 

dynamics of a complicated nonlinear system based on one single time series. 

In other words, we can reconstruct the trajectory of the dynamic behavior 

of the system in more than one dimension even if we only measured one 

of them. To extract the ”hidden” or unobserved dimensions of the system, 

from the one we actually observed, we make use of a technique formalized by 

Takens in 1980: the delay-coordinate embedding. The technique uses past 

values of a single scalar measurement  y  from a dynamical system to form a 

vector that defines a point in a new space of higher dimension. Specifically, 

after defining a time delay  τ , we can construct  m -dimensional reconstruction-

space vectors    R ⃑    
 (  t )  

    from  m   τ -delayed samples of the measurement   y  
 (  t )  

    (eq. 2.2), 

such that at every time point  t 

     R ⃑    
 (  t )  

   =  [    y  
 (t) 

  ,   y  
 (t−τ) 

  ,   y  
 (t−2τ) 

  , …,    y  
 (t− (  m−1 )  τ) 

   ]      (eq. 2.2)2

The higher dimensional reconstructed phase space is not identical to 

the real internal dynamics of the system, but even so it has been demon-

strated to be isomorphic (i.e., has the same structure) and is guaranteed to 

be topologically identical to it (i.e., corresponding points in the original and 

the reconstructed phase space have the same neighbors), which means that 

many important properties of those dynamics, being invariant under dif-

feomorphism, can be usefully derived from the reconstructed ones. This 

concept is called the embedding of the (one-dimensional) time series in an  

 m -dimensional reconstructed phase space (Kennel et al., 1992; Sauer et al., 

1991).

What we are saying here is that when we observe a time series in our field 

of study, we should wonder if it is not the expression of more complex, multi-

dimensional systems. In which case the dynamical trajectory of the original 

system in multidimensional space should be derived first, rather than focus-

ing our analysis on the unidimensional fluctuations we observed (which is, 

incidentally, the standard approach of linear time series analysis methods).

In other words, when running recurrence analysis, we can and want to 

analyze the dynamics of the whole system and not just of the single unidi-

mensional time series we observed, which we can do based on the previously 

mentioned Takens theorem and method. The recurrence plot will then be 

built not in relation to such single time series but rather in relation to the  

m -dimensional dynamic trajectory in the reconstructed, embedded phase 

space. A recurrence will only occur when two points from such trajectory 
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18  Recurrence-Based Analyses

defined in the  m -dimensional reconstructed phase space are close enough, 

that is, within the threshold value.

In Figure 2.2 we illustrate how the Takens technique works. Starting 

from one single dimension of the Lorenz system (Figure 2.2.a, that is, the 

same as in Figure 2.1.b), we create two additional dimensions (Figure 2.2.b 

and 2.2.c) that are time-shifted versions by a delay  τ  (Figure 2.2.b) and  2 * τ  

(Figure 2.2.c) of the original dimension (Figure 2.2.a). These three dimen-

sions are the ones used as the coordinates of the reconstructed 3-D trajectory 

of the system (Figure 2.2.d). As we can see, the delay-coordinate embed-

ding serves to reconstruct a dynamic trajectory in three dimensions which is 

homeomorphic to the original dynamics of the system (Figure 2.1.a).

Given the previous discussion, it becomes clear that to perform any kind 

of the recurrence-based analyses described in the remainder of the book, 

three parameters will have to be estimated at first: the delay parameter  τ , 

the embedding (dimension) parameter  m , and the radius (or threshold) 

parameter  ε . Under certain circumstances, the values for these parameters 

can be set without actual estimation (which we will discuss at the end of this 

section), but nonetheless every statistical software requires values for these 

parameters to run univariate RQA and its extensions.

The delay parameter  τ  and the embedding parameter  m  are jointly nec-

essary to properly unfold the multidimensional dynamics of a time series, 

which result from (nonlinear) interactions between its constituent com-

ponents (Takens, 1980). If the value of the embedding parameter  m > 1 , 

this implies that the latent dynamics from which the unidimensional time 

series of interest was sampled are more complex than what is apparent in 

the observed time series, specifically that they have higher dimensionality 

(Kennel et al., 1992). Figure 2.3 shows a recurrence plot (RP) of the phase 

spaces presented in Figures 2.1a and 2.2d. As we can see, the RP of the origi-

nal, three-dimensional data (Figure 2.3a) is quite similar to the RP obtained 

from the embedded, single dimension of (Figure 2.3b).

The delay and embedding parameter allow us to reconstruct the higher 

dimensional dynamics—the phase space of the actual dynamics from which 

our one-dimensional time series originated. Note, however, that in empirical 

time series noise can also influence the estimation of the embedding parame-

ters and the RQA outcome measures (Hasson et al., 2008; Thiel et al., 2002). 

After the embedding in the new  m -dimensional phase space of the nonlinear 

system dynamics, we are interested in computing a recurrence plot in a simi-

lar fashion as we saw in the previous chapter. To that end, we now need to set 

the radius (threshold) parameter. The threshold parameter  ε  differs from the 

Copyright ©2025 by Sage. 
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute



Chapter 2  •  The Basics of Recurrence Analysis—Univariate RQA  19
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20  Recurrence-Based Analyses

previous parameters in that it does not affect the phase space but rather how 

that phase space is translated into recurrence points on the recurrence plot: 

It provides the size of a tolerance range, within which one point on the tra-

jectory, which is close but not identical to another point on the trajectory, is 

counted as a recurrence in relation to it. If  ε  is too low, the recurrence plot will 

be empty (no recurrence points apart from the LOI) or too sparsely popu-

lated. If  ε  is too high, too many or even all the theoretically possible recur-

rence points on the RP will be marked, and the dynamics of the time series 

will not be discernible and quantifiable in terms of recurrence measures (see 

section on the radius parameter).

Now, let us turn to the process of estimating these parameters. There 

are different options to do so (Marwan et al., 2007), but we will focus on the 

most widely used procedure of estimating the delay parameter via the aver-

age mutual information function (AMI; Abarbanel, 1996; Fraser & Swinney, 

1986; Kantz & Schreiber, 2004) and the embedding parameter via the false-

nearest-neighbor function (FNN; Kantz & Schreiber, 2004; Kennel et al., 

1992). The mathematical details of these two approaches are described in the 

associated citations.

THE DELAY PARAMETER τ

Parameter estimation for recurrence-based analyses always starts with the 

delay parameter  τ . Actually, you could think that the embedding parameter 

(number of dimensions) should be estimated first. After all, if  m = 1 , that 

would mean that the time series would not be embedded at all, and the delay 

FIGURE 2.3 ■    Recurrence Plots of the Lorenz System

Note. Depicted here: (a) a recurrence plot of the original phase space of the Lorenz system 
(Figure 2.1a), and (b) a recurrence plot of the reconstructed phase space (Figure 2.2d).
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Chapter 2  •  The Basics of Recurrence Analysis—Univariate RQA  21

parameter would not be applied or needed, so why estimate it? However, as 

we will see in the next section, in order to obtain a good estimate for m,  τ  has 

to be used—hence the need to estimate it first.

To estimate  τ , we use the AMI (Fraser & Swinney, 1986), which is a non-

linear generalization of the autocorrelation function of a time series (ACF). 

Both mutual information and correlation measure the amount of depen-

dence of two random variables (here the same time series evaluated with itself 

at different off-set lags), but correlation measures it under the assumption of 

linearity which we want to avoid. In particular, just as said, we want to cal-

culate values for AMI at multiple lags  τ  within the time series (auto mutual 

information) and plot those values as a function of the lag, in the same fash-

ion as in ACF we would calculate and plot the correlation coefficient at mul-

tiple lags. The AMI-function informs us about the amount of information 

shared (dependency or reduction of uncertainty measured in bits) with future 

values of the time series   x  
 (  t )  

    as a function of the distance between them, in 

terms of lags. This means that if the amount of information shared between 

points at a certain lag L is low, they are somewhat independent from each 

other, or in other words, by knowing the values of the time series   x  
 (  t )  

    we can 

say little about the values at   x  
 (  t+L )  

   , for any  t  and  L .

How does the AMI-function help us to determine the value of the delay 

parameter  τ ? When using the method of time delayed embedding, we want 

to reconstruct the contributions of other, unobserved variables to the poten-

tially multidimensional dynamics of the system from which   x  
 (  t )  

    was mea-

sured. As explained previously, we do this by using time-shifted copies of   

x  
 (  t )  

   , which are now surrogates for the other, unobserved dimensions of the 

original dynamics. In order for these surrogate series to provide new insight 

about the original, multidimensional dynamics, they should be as indepen-

dent as possible from the original series. That is, they should contribute as 

much new, additional information as possible, and our criterion for defin-

ing “additional information” is the degree of independence or information 

shared as given by the AMI value for a particular lag—the lower the AMI, 

the more independent the shifted time series and the more additional infor-

mation a surrogate series contributes.

By exploring the AMI function, we should then pick one of the lag-

values where AMI is very low or lowest. This implies that time series shifted 

by that lag-value will be relatively independent from each other and hence 

each new dimension based on those time-shifted series will contribute new 

details to the general dynamics of the system or, in other words, this would 

unfold in a higher dimensional space the dynamics of the system under 

scrutiny.
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22  Recurrence-Based Analyses

Figure 2.4 displays one example of the output of the AMI-function. 

We have arbitrarily chosen to investigate the first 50 lags of the time series; 

accordingly, we can see the AMI-function over 50 lags. The question arises 

now, which value to choose? There have been several suggestions: One is to 

take the first value that drops below a predefined threshold, like  1 / e  (i.e., 

the first value of the AMI function that is below the standard error of the 

function) (see Wallot & Mønster, 2018). In our view, this is somewhat prob-

lematic, because for empirical data from the social sciences, other threshold 

values might be just as reasonable—depending on the data properties of a 

particular time series—but we usually lack a prior theoretical understand-

ing of the data in order to predefine such thresholds. Hence, after Abarbanel 

(1996), we rather recommend the approach of taking the first local mini-

mum of the AMI-function, which in the previous example leads us to choose  

τ = 21  as our estimate for the delay parameter. We want the first local mini-

mum also because it saves us data points. Remember, every surrogate series is 

obtained by shifting the original time series   x  
 (  t )  

    by  τ  data points (multiplied 

by the number of embedding dimensions). That means that we are chopping 

off that amount of data points from the original time series—data points that 

are lost for analysis. Hence, choosing the first local minimum, instead of, say 

the global minimum of the AMI-function, is parsimonious in that sense.

FIGURE 2.4 ■    Average Mutual Information Function of the Time 

X-Dimension of the Lorenz System

Note. As can be seen, the function has its first local minimum at a value of lag 21, so we 
chose the value for the delay parameter  τ = 21 .
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Chapter 2  •  The Basics of Recurrence Analysis—Univariate RQA  23

However, with empirical data, you will often encounter cases with no 

clear local minimum. Here you will need to keep several things in mind: 

First, an odd AMI-function could indicate problems with the data (miss-

ing data, outlier, or other problems). If that is not the case, you can ask 

yourself, for example, how much data would I lose choosing the first as 

opposed to the second local minimum, and is the additional data worth the 

drop in AMI? If you find that your AMI-function is bottoming out, you 

can look for an “elbow” like the scree-plot in factor analysis (Cattell, 1966). 

That is, you take the value after which no substantial drops in AMI appear 

anymore.

However, since all these decisions have a subjective component and are 

uncertain, it is often good practice to use several plausible parameter com-

binations and check whether and how different parameters influence the 

results, that is, the actual values of the RQA measures extracted. If those val-

ues do not change drastically between the different choices of the parameters’ 

values we are considering, then this means their influence on the results is 

not critical and will not change the interpretation of the analysis, and we can 

safely pick up one of them. We will return to this topic in Chapter 7, when 

talking about exploring the parameter space.

THE EMBEDDING PARAMETER m

After having obtained a value for the delay parameter, we want to determine 

the embedding dimension parameter  m . We do this by using the FNN. The 

logic of this procedure is rather simple and intuitive and goes as follows: 

An unembedded time series can be conceived as a projection in one single 

dimension of a multidimensional trajectory, which means that some of the 

points in such time series are close in value to other points therein just as a 

result of the lack of higher-order dimensionality of the systems from which 

the time series was observed. They are, in other words, false neighbors of 

those points, and as soon as we unfold the dynamical trajectory in a higher 

dimensional embedded phase space they will shift to a different location. If 

we track the number of false neighbors as we increase in a stepwise manner 

the number of embedding dimensions of the time series, we will observe that 

after a given number of embedding dimensions, the number of false neigh-

bors will go to zero.

Practically then, determining  m  is in many ways similar to determining  τ . 

We will create a plot showing the function of the percentage of FNN for mul-

tiple values of dimensions  m  and want to use the shape of that function to help 

Copyright ©2025 by Sage. 
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute



24  Recurrence-Based Analyses

us make a decision about which value to choose for the embedding parameter. 

The false-nearest-neighbor function hence provides an estimate of how dis-

tances between neighboring coordinates in phase space change as a function 

of embedding dimension. When these changes are small, we assume to have 

found a stable, appropriate dimensionality for our data (Kennel et al., 1992).

It appears now clearly that, in order to explore a number of embedding 

dimensions and comparing the number of false-nearest neighbors between 

them, we will need to use, in the FNN recursive computational procedure, 

the value for the delay τ we already estimated in the previous step. Just as 

with the maximum number of lags that one wants to investigate using the 

AMI-function, we will also need to provide a value for the maximum  m  (i.e., 

the highest embedding dimension for which we want to compute the func-

tion). Figure 2.5 shows the curve of the FNN-function for time series from 

the Lorenz system, using the input value of 10. As can be seen, the func-

tion drops off initially and then bottoms out. Similar to the criteria applied 

FIGURE 2.5 ■    False-Nearest-Neighbor Function of the Time 

X-Dimension of the Lorenz System

Note. As can be seen, the function seems to bottom out at a value of 4. However, an embed-
ding dimension of 3 does not yield an appreciably higher number of false-nearest neigh-
bors, so we choose  m  = 3—also knowing that the true dimensionality of the Lorenz system 
is 3 (see. eq. 2.1). However, the figure might also be suggestive of an embedding dimension 
of 4 or 5, if we did not know the true dimensionality of the system. Then, one can try out 
both parameters and compare the results—a procedure we describe in Chapter 7 under 
parameter exploration.
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Chapter 2  •  The Basics of Recurrence Analysis—Univariate RQA  25

to the AMI-function when selecting a value for the delay parameter, we are 

interested in finding the first value after which the function does not change 

appreciably anymore.

However, just as with the AMI function, empirical data sometimes give 

rise to more complicated curves in the FNN-function. Some argue that, if 

possible, one should select an embedding dimension of the percentage of 

false-nearest neighbors close to 0. However, there are practical problems 

with such suggestions. First of all, higher embeddings reduce the number 

of data points of analysis, and if the number of data points lost to embed-

ding is too high, one needs to make due with lower embedding dimen-

sions. Moreover, empirical data usually have one or more noise components, 

which can inflate embedding dimension estimates. Accordingly, embed-

ding dimensions would be much too high if one aims at 0% of false-nearest 

neighbors.

In general, the methodology works best on stable, low-noise systems, 

and when we deal with real-world data, noise is ubiquitous and can inflate 

the dimension estimation. It should be noted though, in case of doubts, that 

it does not hurt to overembed, that is, to select a value for the embedding 

parameter that is slightly bigger than the first minimum or point of stability 

(Webber & Zbilut, 2005). Overembedding will unfold the dynamic trajec-

tory in higher dimensions but will not recruit new information. Actually, 

Takens’s theorem (Takens, 1980) guarantees, as a sufficient condition, the 

preservation of the topological structures of the original trajectory for val-

ues of m > 2d + 1 where d is the real dimensionality of the system. Clearly, 

however, increasing the embedding dimension does come at the cost of data 

points that are used for embedding and, hence, lost for analysis. Moreover, 

choosing an embedding dimension that is too high can eventually lead even 

random/stochastic systems to display strong, yet artifactual patterns of recur-

rence (Marwan et al., 2007, p. 251).

THE RADIUS PARAMETER ε

Finally, we need to select a radius parameter (in the literature also often 

referred to as threshold parameter). The radius parameter (or thresh-

old) provides the width of the tolerance range within which similar data 

points—or phase space-coordinates—are counted as recurrent. As we 

increase the value of the radius parameter  ε , different data points in the 

time series with increasingly different numerical values (coordinates in 

the embedded phase space) are treated as recurrent. The problem is that  
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26  Recurrence-Based Analyses

the choice of this recurrence threshold may be strongly dependent on  

subjective judgment from the researcher’s side. There are several papers 

discussing methods for selecting the appropriate value of the radius (e.g., 

Schinkel et al., 2008), but a systematic study offering universal guidelines 

in this respect is still to come (Marwan & Webber, 2015). In certain cases, 

such as when one knows something about the magnitude of the noise com-

ponent compared to the dynamics of interest of the time series, or when 

one knows something about the scale on which interesting effects reside, 

this might provide some limited guidance for setting a value for the radius 

parameter. Again, however, such knowledge is usually absent in social sci-

ence applications.

The good news is, however, that the final results of recurrence quantifi-

cation analysis are relatively scale-invariant and robust across different val-

ues of the radius parameter (see the discussion on parameter exploration in  

Chapter 7). Generally speaking, recurrence analyses are most sensitive 

when the radius parameter is set to a low, but not too low, value, so that 

we end up having enough recurrence points to map out the dynamics of a 

time series but not so many recurrence points that these dynamics drown 

in mainly meaningless recurrence (Webber & Zbilut, 2005). That is why 

one first rule of thumb for the choice of the radius is to pick a value based 

on the maximum distance of the points in the phase space, in terms of 

a small percentage (less than 10%) of this phase space diameter (Zbilut 

& Webber, 1992). In other works, some authors recommend selecting a 

radius value, so that the resulting percentage of recurrence points (REC) 

lies between 1% and 5% (Webber & Zbilut, 2005), a range that can be 

even lower for time series with little noise and strong deterministic com-

ponents. In the case of very noisy or noise-type time series, the result-

ing REC can also be higher—between 5% and 20% (Wallot, 2017).  

Figure 2.6 illustrates this, using the x-dimension of the Lorenz system with 

increasing values for the radius parameter  ε . In general, we do not want to 

count things as recurrent that are increasingly different. Accordingly, the 

default advice is to aim for a selection of the radius generating lower recur-

rence rates in the RP, as far as the dynamics of interest are captured in a 

sufficient clear way on it. Because the Lorenz system is deterministic and 

here is presented without noise, we would be inclined to choose the spars-

est plot, shown in panel 2.6a.

So, in relation to the above suggestions, if one wants to determine which 

radius to use, one can produce a recurrence rate function by calculating the 

percentage recurrence (REC) for different values of the radius parameter tar-

geting the desired amount or range of REC (see also Chapter 7).
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Chapter 2  •  The Basics of Recurrence Analysis—Univariate RQA  27

FURTHER PARAMETERS

In the previous discussion, we presented the most important and crucial param-

eters that have to be determined and set before we run any of the recurrence-

based methods. Any of the statistical software solutions3 computing recurrence 

analysis will require the user to enter appropriately chosen embedding dimen-

sion ( m ), delay ( τ ), and radius ( ε ). But there are additional parameters whose 

setting, usually, is requested as well. However secondary, they are also relevant 

for the computation of the analysis and can have an influence on the results 

obtained. It is useful for a social scientist approaching recurrence quantifica-

tion analysis for the first time to be at least acquainted with them, and, hence, 

we will shortly mention those additional parameters and quickly explain their 

meaning in the present section.

FIGURE 2.6 ■    Recurrence Plots of the Reconstructed Phase 

Space in Figure 2.2d

Note. As can been seen, with increasing radius parameter  ε , more trajectories in phase 
space are counted as being recurrent, and the number of recurrent structures increases 
from (a) to (d) (with  m = 3 ,  τ = 21 , of  ε  being increased from 2, to 4, 6, and 8).
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28  Recurrence-Based Analyses

The minimal length of diagonal and vertical lines (sometimes called the 

parameter LINE) just defines how many adjacent recurrence points in the 

RP will be needed to count this pattern as a line. We already mentioned that 

one of the key patterns in RP is diagonal and vertical/horizontal lines, and 

several recurrence measures are based on some kind of quantification of the 

points forming such lines. For this reason, it may well be useful to clearly 

define what counts as a line. The absolute minimum number of adjacent 

points to be counted as a line is 2, and so this is also the default value typically 

used in statistical software. Some of them, though, give the user the possibil-

ity to customize and make the definition of line more stringent, by increasing 

the value of this parameter. Notice that such a choice will as a consequence 

affect recurrence quantification measures like DET, ADL, MDL, and others.

Another option users are given in some of the software packages for 

recurrence analysis is the choice of a distance norm. When computing 

distances between points (vectors of coordinates) in the phase space of 

the reconstructed dynamics, the standard choice would be the use of the 

Euclidean distance norm, that is, the computation of the straight line con-

necting the two points in the  m -dimensional Cartesian coordinates of the 

reconstructed phase space (L2-norm). And actually, this is often the only 

or the default option given by programs. In theory though, we may con-

ceive the application of other distance norms between points, like minimum 

or maximum norms (L1-norm and Linf-norm; see Marwan et al., 2007; 

Webber and Zbilut, 2005), which change the shape of the neighborhood 

around a point in phase space. Some authors also conceive the applica-

tion of a so-called order norm, that is, the computation of recurrence plots 

based on distances between vectors of coordinates in ranked form (Webber, 

1996-2021).

Almost all the software packages also give the option of setting a rescale 

parameter. The rescale parameter acts on the matrix of distances between all 

the points of the reconstructed dynamical trajectory embedded in the cho-

sen phase space, and may affect the resulting recurrence plot. This param-

eter typically envisions a few options like rescaling to the mean or maximum 

distance. Rescaling to mean distance can be taken into consideration for 

smoothing, in the presence of outlier distances; otherwise, usually, rescal-

ing to maximum distance is applied. This will rescale the matrix to the unit 

interval (0% to 100%) and will allow the radius parameter to be expressed in 

a percentage of the maximum distance in the data.

One last option recurrence analysis usually allows users to select is normal-

ization. Normalization involves the choice of whether to standardize the time 

series before running the analysis. This choice can be crucial and should be 
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Chapter 2  •  The Basics of Recurrence Analysis—Univariate RQA  29

taken into account especially in case we are analyzing two (or more) time series 

at a time as in cross-recurrence quantification analysis (CRQA) or multidimen-

sional recurrence quantification analysis (MdRQA) (see Chapters 3 and 6).

The question of normalization and rescaling is also related to the choice 

of the radius parameter. Because recurrence-based analyses are analyses of 

sequential properties of a time series, and especially with empirical data, 

time series from different participants or sources can also differ in level or 

magnitude of variance. These differences in turn also affect how recur-

rences are defined. However, usually—but not necessarily always—we are 

interested in disentangling these two aspects, and normalization is a way 

to do so: If two time series are normalized but differ in terms of recurrence 

measures, then this is most likely attributable to their dynamics, a differ-

ence in the sequential ordering of their values (Shockley, 2005). For fur-

ther readings on the description of these parameters please see, for example, 

Webber and Zbilut (2005) and Marwan et al. (2007).

SUMMARIZING RQA OUTPUTS

As anticipated in the previous chapter, recurrence-based analyses provide a 

wide range of outcome variables that quantify different aspects of the indi-

vidual or shared dynamics of time series, based on the pattern of recurrence 

points appearing in the recurrence plot of the series. Table 2.1 describes the 

most common recurrence measures. The most basic measure is percentage 

recurrence (REC), which we have already introduced and is simply the sum of 

all recurrence points divided by the size of the recurrence matrix. While REC 

captures how many individual recurrences occur on a recurrence plot, all of 

the other measures quantify different aspects of clustering of recurrences 

related to longer lasting temporal structures in a time series.

Further recurrence measures have been proposed to capture different 

aspects of the dynamics of a time series related to the clustering and connec-

tivity of its values and its complexity (Marwan et al., 2007). Table 2.1 sum-

marizes the most widely used measures.

Just as explained in the rightmost column of Table 2.1, each of the met-

rics computed based on the RP are meaningful in the context of the dynami-

cal behavior (the trajectory) of the system measured, and within this context 

they need to be discussed and interpreted. So, for example, DET is a metric 

that basically gauges periodicity of the behavior/dynamics of the system, as it 

computes the percentage of recurrences occurring in diagonal structures—

strings of data points with similar values and repeating in the same sequence 
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30  Recurrence-Based Analyses

Variable Name Definition Quantifies . . .

Percentage 

Recurrence 

(REC)

Sum of recurrent points 

in RP /Size of RP

   1 _ 
 N   2 

     ∑ 
i,j=1

  
N

   R  
ij
    

repetitiveness of the values across 

the time series. It is a loose 

indicator of the generalized level 

of (auto)-correlation of the series.

Percentage 

Determinism 

(DET)

Sum of diagonally 

adjacent recurrent 

points / Sum of 

recurrence points in RP

  ∑ 
l= l  

min
    

N   lP (  l )    /  ∑ 
l=1  
N   lP (  l )    

how many of the individual 

repetitions co-occur in connected 

trajectories. It is an important 

index of the fact that dynamic 

trajectories of the system tend to 

regularly visit in approximately the 

same order the same places in a 

phase space.

Average Diagonal 

Line Length 

(ADL)

Average length of the 

diagonal lines in RP

  ∑ 
l= l  

min
    

N   lP (  l )    /  ∑ 
l= l  

min
    

N   P (  l )    

how long the average repeating 

trajectory is. It helps distinguish 

between highly periodic 

deterministic systems, whose 

trajectories tend to have long 

streaks of recurrences, and 

deterministic but chaotic systems 

or nondeterministic systems.

Maximum 

Diagonal Line 

Length (MDL)

Length of longest 

diagonal line in RP

(excluding the main 

diagonal)

  max  (    {    l  
i
   }    

 N  
l
  
  

i = 1
  )    , 

  N  
l
   =  ∑ 

l≥ l  
min

     P (  l )    

how long the longest repeating 

trajectory is. It is an indicator 

of the chaoticity of the system. 

The shorter the MDL the less 

stable’(i.e., more chaotic) the 

signal is. It was initially connected 

to one important invariant of 

dynamical systems, namely the 

most positive Lyapunov exponent.

Diagonal Line 

Entropy (ENTR)

Shannon Entropy of the 

distribution of diagonal 

line lengths over integer 

bins.

 −   ∑ 
l= l  

min
  

  
N

  p (  l )   log  p (  l )     

how complex are the dynamics 

of the time series. Entropy 

is a fundamental concept in 

information theory and can be 

loosely defined as the amount of 

uncertainty residing in the signal 

considered as an information 

channel. The higher the entropy, 

the more complex the signal.

TABLE 2.1 ■    Summary of the Most Common Recurrence 

Measures
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Chapter 2  •  The Basics of Recurrence Analysis—Univariate RQA  31

after some time. In different experimental or research fields such a periodic-

ity (or its lack) may point to the existence (or not) of a causal process generat-

ing (i.e., determining) behavioral cycles whose specific meaning would need 

to be contextualized according to such field and the research hypotheses put 

forward. For example, changes in DET may be related to and reflect changes 

in experimental conditions, as increased cognitive load makes postural 

sway more regular (deterministic), in order to cope with limited attentional 

resources (see Pellecchia & Shockley, 2005). In a similar fashion, the LAM 

metric gauges the general tendency of the system to slow down and dwell 

around some state in space phase. This metric has allowed and has been used 

to identify transitions in EEG patterns in two experimental conditions in a 

behavioral task (probability of appearance of a target sound in an oddball 

reaction-times paradigm; Marwan & Meinke, 2004).

Finally, let us take a look at some example data that we will use across the 

book to start to build some intuition about what these measures tell us about 

Variable Name Definition Quantifies . . .

Percentage 

Laminarity (LAM)

Sum of vertically/

horizontally adjacent 

recurrence points/Sum 

of recurrence points 

in RP

  ∑ 
v= v  

min
    

N   vP (  v )    /  ∑ 
v=1  
N   vP (  v )    

the occurrence/amount of laminar 

states in the system. It indicates if 

the system’s trajectories (values 

in phase space) do not change or 

change very little at subsequent 

time sampling points, that is, the 

system lingers around certain 

states.

Trapping Time 

(TT)

Average length of the 

vertical/horizontal lines 

in RP

  ∑ 
v= v  

min
    

N   vP (  v )    /  ∑ 
v= v  

min
    

N   P (  v )    

how long the lines indicating 

laminar states are in average. This 

measure gives an indication of the 

time the system spends lingering 

around certain states.

Maximum 

Vertical Line 

Length (MVL)

Length of the longest 

vertical/horizontal line 

in RP

the maximal length of laminar 

states in the system. It 

corresponds to the MDL in the 

case of vertical/horizontal lines 

in the RP.

Categorical 

Area-Based 

Entropy (catH)

 −  ∑ 
a>1  
 N  

a
     p (a)   log  p (  a )    complexity of the distribution of 

size of dynamical states.

Note. Further RQA measures exist, and others are being developed—for the description of 
additional measures, see for example Marwan et al. (2007).
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32  Recurrence-Based Analyses

the dynamics of a time series. Figure 2.7 shows example time series that we 

are going to use across the remaining chapters of the book when discussing 

further recurrence analysis techniques and illustrating how they can be used 

to address questions regarding the dynamics of time series data. We will see in 

the next couple of chapters that different recurrence methods lend themselves 

to answer different questions, for example, Cross-Recurrence Quantification 

FIGURE 2.7 ■    Examples of Empirical Time Series Used in This 

Book

Note. (a) Time series of daily cases of SarsCov-19 for Austria, Germany, and South Korea 
(from left to right) from 01/22/2020 to 09/16/2021. Data Source: European Centre for 
Disease Prevention and Control. (n.d.). Data on testing for COVID-19 by week and country. 
https://www.ecdc.europa.eu/en/publications-data/covid-19-testing; (b) Time series of 
daily value of the S&P500, DAX, Nikkai225 indices (from left to right) from 04/27/1993 to 
11/11/2021. Data Source: Yahoo!. (n.d.). Yahoo! Finance. https://finance.yahoo.com; (c) Time 
series of percentage of the public vote in political polls on federal elections in Germany 
from 01/07/2000 to 05/12/2023. Data Source: Wahlrect,de e. V. (n.d.). Sonntagsfrage 

Bundestagswahl. https://www.wahlrecht.de/umfragen/index.htm; (d) Second-by-second 
coded vocalizations of mother (left) and infant (right) during interaction. Data Source: 
Leonardi et al., 2016. The data sets, together with R-code implementing the analyses, an 
also be found here: https://osf.io/8ubcj/.
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Analysis (Chapter 3) can be used to address questions such as how strongly 

mother-infant vocalizations couple. The Diagonal Cross-Recurrence Profile 

(Chapter 4) can be used to address the question of whether mothers or infants 

lead or follow in terms of their vocalization patterns with regard to each other. 

Windowed Recurrence Analysis (Chapter 5) can be used to reveal changes in 

infection dynamics related to the onset of infection waves, or how coupling 

of mother-infant interactions evolves over time. Finally, Multidimensional 

Recurrence Quantification Analysis (Chapter 6) can be used to ask questions 

such as whether the joint dynamics of different stock market indices reveal 

global patterns of economic trends.

NOTES

 1. In the literature, the terms threshold and radius are used interchange-

ably. The term radius points to the idea that the dissimilarity or distance 

between values can be measured in a multidimensional space, so that 

recurrence happens when one point-value is in the vicinities in space of 

another point-value, that is, it is inside the multidimensional sphere with 

the chosen radius around the other point-value.

 2. Forward delays, where reconstruction-space vectors are indicated as  

    [  y   (  t )    ,   y   (  t+τ )  
  ,   y   (  t+2τ )  

  , …,    y   (  t+ (  m−1 )  τ )  
   ]    , are more commonly used in the vectors 

notation and practical computation in the literature. However, from a 

mathematical point of view, the two notations are equivalent while the one 

used in the text better obeys causality.

 3. Please be aware that in alternative software and in the literature those 

parameters may go under different names, like lag or time lag instead of 

delay, and threshold or cut-off distance for the radius parameter.
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