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Chaos Theory and Its Implications for Social
Science Research

Hal Gregersen!? and Lee Sailer?

Based on theoretical and mathematical principles of chaos theory, we argue that
the customary social science goals of “prediction” and “control” of systems
behavior are sometimes, if not usually, unobtainable. Specifically, chaos theory
shows how it is possible for nearly identical entities embedded in identical
environments to exhibit radically different behaviors, even when the underlying
systems are extremely simple and completely deterministic. Furthermore, chaos
theory arguments are general enough to apply to any type of entity, including
individuals, groups, and organizations, and therefore they are relevant to a large
domain of social science problems. As a result, this paper concludes with six
familiar claims about the study of social phenomena for which chaos theory
provides new theoretical arguments.
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The only way to know how a complex system will behave
after you modify it is to modify it and see how it behaves.

George Box

INTRODUCTION

For decades, social scientists have searched for ways to predict social
behavior. For a number of reasons, the precision of these predictions is
often discouragingly low. In this paper we argue that some social behavior
is hard to predict because it is, in a sense, unpredictable and the underlying
social systems are inherently chaotic. This means that there exist social en-
tities such as individuals, groups, organizations, or institutions, with virtually
identical initial internal states, embedded in virtually identical environ-
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ments, which can exhibit totally different behaviors even though their be-
havior is governed by the exact same set of rules or “laws.” This use of
the word “chaos” denotes something quite distinct from other causes of
error in empirical studies, such as randomness, exogenous variables, and
measurement error. Additionally, as used here, “chaos” does not imply an-
tisocial or psychopathic meanings of the word (e.g., Bender, 1973;
Kalogerakis, 1973; Masserman, 1984; Zimbardo, 1969). Nor are we con-
cerned with systems with a stochastic component, either in reality or in a
model. In short, we believe that some social systems are characterized by
“chaotic” behavior which precludes the possibility of predicting the future
behavior of that system, and that researchers should learn how to begin
identifying such situations.

While the scientific study of chaos is relatively new to the social sci-
ences, the examination of chaotic systems in the physical and biological
sciences has made rapid, significant progress during the last decade
(Holden, 1986; Gleick, 1987; Mandelbrot, 1983). Interestingly, certain char-
acteristics of these well-known chaotic systems are similar to the
characteristics of social systems, suggesting that many social systems are
chaotic (which we try to demonstrate in this paper). Once given the chaos
in social systems, we then discuss the significant, and perhaps unsettling,
implications of chaos theory for social science research.

The clearest examples of chaotic systems are mathematical models
(such as the now famous Mandelbrot Set) which have very simple, com-
pletely specified, deterministic descriptions; yet, they exhibit wildly
unpredictable behavior. In nature, many examples of what appear to be
chaotic systems exist, and a new set of mathematical tools for describing
and analyzing them has emerged (see Gleick, 1987, for a technically accu-
rate, popular survey of chaos in non-social systems). We say they “appear
to be chaotic” because these systems (such as cloud formations or fluid
turbulence) exhibit wildly unpredictable behavior, and because our best un-
derstanding of them comes from mathematical models which are
mathematically chaotic.

Indeed, there is considerable scientific interest in'whether such physi-
cal systems can actually be chaotic (Lorenz, 1984). For example, even if
one knows the exact components of air pressure and momentum, tempera-
ture, and humidity of every section within a cloud and its surrounding
atmosphere, it is still impossible to predict how the cloud will behave spe-
cifically in the next few instants. Similarly, in an example from ecology,
population size sometimes approaches an equilibrium point, but often
jumps wildly and unpredictably from year to year, perhaps because popu-
lation growth is chaotic by nature (Li, 1975; May, 1974). In this case, it is
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interesting to note that even simple mathematical models of population
growth, such as xr+1 = m(1-x), are chaotic for some values of r.

Other examples of systems that seem to exhibit chaos are static in
electrical transmissions (Berger & Mandelbrot, 1963; Mandelbrot, 1983),
turbulence in air and fluid flows (Miles, 1989; Ruelle, 1971, 1980, 1983),
stellar configurations (Wisdom, 1983, 1985), and human physiological pat-
terns such as brainwaves (Arun, 1986; Goldberger et al., 1985; Mackay &
Glass, 1977). In some of these phenomena, they may first appear random
and chaotic, yet they can exhibit periods of quite stable behavior. In other
systems, they may appear initially stable and then change suddenly and
discontinuously to another state. Whether or not these phenomena initially
appear chaotic and whether or not they actually are chaotic, the critical
point is that our best understanding of these phenomena comes from
mathematical models which are chaotic. That is, the models themselves be-
have in wildly unpredictable ways.

Typically, models that exhibit chaos are represented by iterated poly-
nomials, for example, the population growth model mentioned above.
Moreover, even if the theoretical models for some specific social science
problem are not usually characterized by such polynomials, polynomials can
still be used to approximate nearly any function. In short, they can be used
in the study of a very large class of physical and social systems which might
appear chaotic.

CHAOS IN SOCIAL SYSTEMS

In mathematics, physics, meteorology, ecology, and similar nonsocial
science fields, the existence of chaotic systems is now fairly well established
(Gleick, 1987). Evidence for chaotic behavior in the domain of social sci-
ence began emerging in the late 1980s (Leifer, 1989; Kelsey, 1988; Loye
& Eisler, 1987; Babiiroglu, 1988) and has continued to the present (Medio,
1991; Nijkamp & Reggiani, 1991; Rosser, 1990). We believe that there are
at least two useful indicators of chaos in social systems. For one, chaos is
indicated by highly iterative, recursive, or dynamic structures that change
over time. Systems or descriptions of systems that fit this mold will often
exhibit chaotic behavior over some part of their domain. A second indicator
of chaos is highly discontinuous behavior in the system, such as sudden
shifts in organizational policy, downsizing, product discontinuations, volun-
tary employee turnover, etc. Interestingly, there are strong similarities
between the mathematical models that produce chaotic behavior in biology
and physics, and some of the models already used in the study of social
behavior (e.g., Andersen & Sturis, 1988). At the abstract level, chaotic sys-
tems seem to share three important properties:
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e The system being modeled is characterized by a state vector z, at
time #; what social scientists might call a cross-sectional or syn-
chronic profile.

e The system is embedded in an environment characterized by an-
other state vector u,.

e The state of the system at time ¢ +1 is a function of the system
state z, and the environment state u, at time ¢.

We can profitably use a pictorial notation due to Pickover (1988) in Fig.
1. Figure 1 shows that the next state z,,; depends on the current state and
the environment, and the squiggle reminds us that the transformation may
be nonlinear.

Loye and Eisler (1987, p. 58) suggest that the word “chaos” itself,
because of its many negative senses in common parlance, might obstruct
a clear understanding of the nature of chaotic systems. They suggest calling
them transformation systems to emphasize that chaos often appears in sys-
tems that dynamically transform themselves from one moment to the next,
subject to internal and environmental constraints. Also, instead of saying
that a system is chaotic if its state z fluctuates wildly or unexpectedly, a
less loaded word that can be used is “discontinuous” (in the chaos litera-
ture, the word “fractal” is sometimes used).

APPLICATION OF CHAOS THEORY TO SOCIAL SYSTEMS

Many social systems studied by social scientists can be characterized
as transformation systems, and, in many cases, these systems show evidence
of highly discontinuous behavior (Andersen & Sturis, 1988; Babiiroglu,
1988; Kelsey, 1988; Leifer, 1989). However, many researchers are as yet
unaccustomed to looking at topics from this point of view. It is important,

Fig. 1. A simple chaotic system.
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however, that researchers watch for these characteristics in systems they
study, since failure to do so can lead them to allocate resources to low
payoff activities (i.e., insignificant results). There have been some sugges-
tions of what specific topics might be most amenable to chaos theory.

First, there are systems which can be characterized as transformation
systems, though they do not show evidence of highly discontinuous behav-
ior. Loye and Eisler (1987) suggest such issues as solidarity, conformity,
charisma, anomie, and norm formation are transformation systems which
may have latent chaos within apparent stability. It is also easy to charac-
terize much of the social network literature, especially the work on dynamic
networks, as these types of transformation systems (Bernard & Killworth,
1979; Burt, 1975; Holland & Leinhardt, 1977; Hunter, 1975; Wigand, 1979).

Second, other potential examples of transformational phenomena
which are inherently discontinuous or contain elements of unexpected
change could be management succession (March & March, 1977), environ-
mental change (Emery & Trist, 1965; Miles, 1989), organizational decline
(Cameron, Kim, & Whetton, 1987), crisis behavior (Carley, 1986), nego-
tiation processes (Fisher & Ury, 1981), decision making (Cohen, March,
& Olsen, 1972; Masuch & LaPotin, 1989), work role transitions (Black,
1988; Nicholson, 1984), or organizational change (March, 1981; Wilkins &
Dyer, 1988).

Since chaos theory can be potentially relevant to such a wide variety
of topics, our discussion of its application is intentionally kept very general
in this paper. Once readers gain an understanding of how chaos theory
could apply to social science problems through our analysis, we would sug-
gest that they examine their own research topics from the transformation
systems point of view; look for areas of discontinuous, unexpected, or un-
predictable change, and thus, apply our general statements about chaotic
behavior to their specific areas of expertise.

THE NATURE OF CHAOS

It is important to remember that even systems that are extremely sim-
ple, completely described, and totally deterministic can exhibit chaotic
behavior, and if simple systems can be chaotic, then complex systems will
likely be even more so. Even a system as simple as the one diagrammed
in Fig. 1 can be chaotic. All that is needed is to fill in some detail about
how the new state is related to the old state. An important mathematical
equation which produces chaotic outcomes is:

Z1=20 -, t=0, .., 1)
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where z and u are complex numbers, and zy = (0, 0). It is sometimes con-
venient to use a different notation that doesn’t require complex numbers,
such as

Xt+1 =xt2 —y?—ux
t=0,..,00 ()
Ye+1=2x0t—uy

where in this notation the state vector z, has two components x; and y,, and
likewise the environment state vector u = (u, u,). While the environment
u could be a function of time, as are x and y, let it be constant u, = u.
Using complex numbers, it can be shown that Eqs. (1) and (2) are equiva-
lent.

Equations (1) or (2), which underlie Mandelbrot’s Set (Mandelbrot,
1983), the set of all pairs (u,, u,) for which x, and y, do not diverge to infinity,
provide an example of a chaotic system, in this case a purely mathematical
one. Equation (2) is simple and deterministic, yet unpredictable in the fol-
lowing sense. In general, there is no known way to predict whether x, and y,
will diverge or not, given a specific (v, u,). For some initial values of u, for
example u = (2, 2), x, and y, grow without bound as ¢ increases, while for
others, for example u = (1/2, 1/2), they do not (see Appendix for details).

In itself, convergence or divergence is not remarkable. It is our inability
to predict convergence or divergence that is remarkable. This discussion is
cleaner in the notation of Eq. (1). Suppose that for two similar initial values
u; and u, it is observed that z;, and z,, both converge to finite L. (By z;, we
mean the value that z, converges to as t — o when u = u;.) What value for
z3, might be expected for an initial u3 = (u; + u,)/2 exactly halfway between
u; and u,? In a well-behaved world, one might bet that z5, will also converge
to L, or at least a value close to it. In the world created by Eq. (1), however,
you would frequently lose this bet. For Eq. (1), there are an infinite number
of cases where arbitrarily close u; and u, are separated by a u; that exhibits
the opposite behavior, when z;, and z,, converge to L, z3, diverges to infinity.

It is this “fractal” discontinuity that causes all the fuss. For a substantial
portion of the values of the u;, extremely close neighbors behave in opposite
manners. Knowing how a large number of similar «; behave is not sufficient
for knowing how another, similar u; will behave. In fact, increasing sample
size to predict how u; will behave is not even relevant in a chaotic domain.

Is chaotic behavior in this mathematical system any reason to be con-
cerned about the possibility of chaos in the study of social systems? Let us
suggest an analogy. Consider a topic like commitment. Suppose that (x;,
yr) are two measurements of an individual actor’s commitment, and (ux



Chaos Theory 783

uy) represents the environment the actor encounters. Perhaps x is the ac-
tor’s behavioral commitment, and y is attitudinal commitment, while uy and
uy represent two forms of support for the actor, such as co-worker rela-
tionships and formal reward systems.

Next, and this is the fanciful part only useful for this example, suppose
that an actor’s new state, zr = (x;, yr), his or her behavior and attitude at
time ¢, is accurately described by Egs. (1) or (2).

Now suppose that person 1 and person 2 have similar co-worker re-
lationships and formal reward systems in their environments u1 and u2,
each start with the same behavioral and attitudinal commitments, (0, 0),
and after prolonged exposure to their environments, each converges to the
exact same commitment profile. That is, zj = z2.

Now consider person 3, who also starts at (0, 0), and whose environ-
ment is very similar to u; and u2. In fact, it is exactly halfway between
them: Since persons 1, 2, and 3 all start with the same behavior and atti-
tude, and their environments are nearly identical, it is surprising (i.e.,
unpredicted) when z3 converges to a value completely different from z;
and z2. Of course, one poor prediction would not surprise any social sci-
entist. The problem is that even in a study with a large number of actors,
there can be a very large number of cases where arbitrarily similar actors
can display radically different behaviors. Moreover, this dynamic can occur
in social systems which may appear quite stable on the surface.

In short, this commitment analogy suggests at least two fundamental
points: First, for some systems, knowing an entity’s state, its environment,
and the “laws” which govern the transformation of the state from one time
to the next are not sufficient to guarantee that the long run behavior of
the entity can be predicted. While z’s behavior can be simulated in order
to better understand it, it cannot be predicted in a chaotic system. Second,
collecting more data points and knowing the behavior and environment of
a larger number of extremely similar entities is not sufficient to predict the
behavior of a new entity with the same profile in the same environment.
Unfortunately, such is the nature of discontinuous, chaotic systems where
statistical means, linear and nonlinear regressions, or structural equations
are useless in one’s attempt to understand chaos. However, graphical rep-
resentations can help us better understand chaos where these traditional
analytic tools fall short.

GRAPHICAL REPRESENTATIONS OF CHAOS

Much of the research performed on chaotic systems in the physical
and biological sciences has benefitted from visual representations of chaotic
behavior using high-powered computers with advanced graphics capabilities
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(Gleick, 1987; MacDonald et al., 1985). In order to better understand
chaos, it is useful to have a way to produce visual representations (derived
from mathematical models) of chaotic behavior.

Remember that the set of u for which Eq. (1) does not diverge is
known as Mandelbrot’s Set, shown in Fig. 2. You can see that the boundary
between the light and dark areas is irregular, and would not be well rep-
resented by a linear or nonlinear regression curve. (As an aside, the reader
may be familiar with pictures of Mandelbrot’s Set which are brilliantly col-
ored. This is accomplished by coloring points in the set with one color,
and coloring points not in the set with different colors, depending on how
near the point is to the set. In our pictures, we take the less ornate but
more accurate approach of coloring non-set points white.) The fine detail
of Mandelbrot’s Set is interesting in that it is “self-similar,” meaning that
closeup views of a small part of the boundary have the same characteristics
as the entire boundary. The nested patterns resulting from the Mandelbrot
Set resemble Russian doll sets in which each smaller doll is similar to the
larger dolls. To see this infinite, self-similar patterning process, we magnify
a region near the boundary between those u that diverge, and those that

Fig. 2. A low resolution picture of Mandelbrot’s Set. White areas represent u for which
z, diverges. The small rectangle shows the region magnified in the next figure. The
resolution of this picture is limited by computer time and the printing device used to
produce it.
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do not, shown in Fig. 3. (Readers new to chaos studies are perhaps con-
fused by what these pictures have to do with Eq. (1), and should read
Appendix.)

As you can see, the magnified region reveals further, fine-grained
complexity that the lower magnification disguised. This is an important
characteristic of many chaotic systems. It suggests that the boundary be-
tween the set of points that behave one way and those that behave another
way is not smooth. Rather, it is unpredictably discontinuous, regardless of
the level of magnification that is used. This irregular, or “fractal,” boundary
is part of the unpredictable nature of Mandelbrot’s Set. Near this boundary,
points u1 and u2 (representing the environments of two entities in our anal-
ogy) neither of which are in Mandelbrot’s Set might be separated by point
u3 which is in the set, and thus behaves very differently.

It seems self-evident that such discontinuous patterns of behavior are
not amenable to traditional mathematical and conceptual tools intended
for the analysis of phenomena in a continuous world. By this, we mean
that analysis of variance and regression analysis do not seem to offer any
useful understanding of Figs. 2 and 3 because these types of discontinuities
are often hidden from quantitative analysis since cross-sectional research
designs cannot recreate the complex boundary discontinuities with one

Fig. 3. A magnified region near the boundary between black and white in Fig. 2.
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panel of data. Consequently, cross-sectional research on inherently chaotic
phenomena may actually produce an illusion of certainty (i.e., prediction)
for a social phenomenon with underlying unpredictability. Thus, one needs
to utilize the appropriate level and type of analysis to reveal the disconti-
nuities of chaotic phenomena. Before addressing this issue directly, we will
attempt to link chaos theory concepts even more closely to social science
contexts.

SIMPLE META-MODELS OF SOCIAL BEHAVIOR

Instead of having (x, y:) represent two measurements of a single in-
dividual, suppose that x represents marketing, and y represents production,
and for each of these work units there is a measure of effectiveness. Mar-
keting’s effectiveness depends on its previous effectiveness, production’s
previous effectiveness, and marketing’s environment ux, and similarly for
production. This is shown in diagrammatic form in Fig. 4.

It is easy to see how this type of diagram could show a complex pat-
tern of interactions between any number of work units by adding more
entities &, v, w, ..., each behaving within some environment wy, wy, uw, ...,
with arrows showing which entity affects others. The arrows have squiggles
in them to denote nonlinear dependencies of each entity on some others.
As before, suppose the environments ux and uy remain constant over time,
and that the transformation of x and y from time ¢ to ¢ + 1 is stable. It is
perhaps interesting to note that this diagramming technique, which is, of
course, virtually identical to the kinds of diagrams that social scientists draw
to represent patterns of social interaction (e.g., Sailer, 1978; Weick, 1979),

u
X
Uy

Fig. 4. A simple meta-model of social bchavior.
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was recently proposed by a computer scientist and mathematician (Pick-
over, 1988) as a general way to depict a large class of chaotic systems in
natural and social domains.

How might such a system behave? Given a starting point for x, y, and
the u, we can monitor x and y through time. They might diverge, the ef-
fectiveness of x and y careening wildly away from the norm and staying
there (e.g., becoming disastrously ineffective). Or, they might reach some
stable configuration, perhaps converging to some single pattern of effec-
tiveness (e.g., consistently moderate in effectiveness) (called a “static
attractor”). They could also alternate among a set of effectiveness values,
for example moving consistently from high to medium (called a “dynamic
attractor”). Or, they could alternate among an apparently infinite and un-
structured, but bounded, set of effectiveness values (called a “chaotic” or
“strange attractor”). This means that their effectiveness would change con-
stantly and unpredictably within a bounded range.

To explain the form of relationship between x (marketing) and y (pro-
duction), it would be necessary to determine the values of the parameters,
or at least to find some satisfactory approximation. Practically speaking,
this is asking a lot. No social science study has ever collected enough data
through time to permit such models to be accurately determined, but it is
possible in principle. At this point, we can only roughly estimate that such
a study would require measurements at at least 1000 points in time for
every entity to the system, and perhaps 100 such systems would need to
be studied. Again, roughly estimating, this amounts to at least 200 mega-
bytes of data. Even if a data set this large were collected, the dilemma of
respondent reactivity may create validity threats.

Assuming the data were collected, an infinite number of simple de-
terministic, mathematic rules (the “laws” social scientists look for) might
be used to characterize the relationship between x (marketing) and y (pro-
duction). The class of all such models is infinite, however, even if we restrict
them to subsets of simple quadratics. As an example, though, we have ex-
perimented with rules of the following form which describe a simple
nonlinear system with an interaction term:

2 2
Xk+1 = Xty gt Xy - uy
3)
_ 2.2 2 2
Yi+1 = X + 1%y + gy’ Xiyk — Uy

The rs are small, randomly chosen coefficients. We hit upon Eq. (3) by
simple experimentation. We were looking for a pair of equations that could
in some sense represent a large number of plausible models that might
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describe the transformation of states of two interacting entities through
time (these could be individuals, groups, or organizations). Mathematically,
Eq. (3) would offer a first cut approximation to many such models and it
is unlikely that changing the form of Eq. (3) would have much substantial
effect on the rest of what we say here. Also, since simple quadratics can
be used to approximate many functions that might describe actual two-per-
son social systems, it is plausible to say that for some values of the rs we
would have models of those systems, but, of course, we can offer no such
models here.

For this example, we selected the rs randomly and investigated the
behavior of those systems. These random models are representative of the
types of models that we might obtain by fitting Eq. (3) to data, so we call
them metamodels. In our experiments, the metamodels often produce cha-
otic behavior. For example, Figs. 5 and 9 provide a visual representation
of the hypothetical dynamics between marketing (x) and production (y) and
illustrate some potential metamodels of these relationships. The figures also
display the characteristic fractal or discontinuous patterns of areas of di-
vergence (in white) which might represent conflictual relationships between
departments and areas of nondivergence (in black) which might represent
the continuation of cooperative relationships. Moreover, closeups of parts

Fig. 5. System generated by Eq. (4), for u, and uy in the interval [-5, 5].
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of the system in Figs. 6-9 show that what might appear predictable in Fig.
5, is in fact chaotic with an arbitrarily fine data structure.

For the issues we are trying to illustrate through Figs. 5-9, the exact
values of the r are unimportant, but are included for completeness. To
begin, we view in Fig. 5 the set generated by the pair of equations

Xpyy = —1.0x2 + -0.9980297 + ~1.833476x,y, - u,
C)

Vis1 = —0.646715x2 + —0.270796 y7 + —~1.634678xkyk — uy

In Fig. 6, we magnify the picture somewhat and can see that the boundary
of the center blob is not smooth as it appeared to be in Fig. 5. In fact,
the boundary is discontinuous, or chaotic. This underlying discontinuity is
revealed even further as we zoom in progressively closer on the boundary
of the center blob. Specifically, in the lower left corner of Fig. 8 is a small
cuba-shaped cluster. After zooming in on it, Fig. 9 reveals a series of nested
semi-spirals surrounded by further instances of diverging points in close
proximity. Interestingly, these spirals could not have been predicted when
first examining the boundary on the center blob in Fig. 5.

Fig. 6. Magnified view of system generated by Eq. (4).
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Fig. 7. Further magnification of Eq. (4). Take u, from [-1.646875, —1.305469], and u,
from [.522, 1.157).

This brief tour of the fractal or discontinuous patterns of divergence
and nondivergence (in white and black, respectively) illustrates graphically
that very slight shifts in certain parameters can result in radically different
patterns of behavior. In these figures, the inherent unpredictability of meta-
model relationships between marketing and production departments was also
illustrated. Moreover, attempting to fit traditional research designs and sta-
tistical analyses over the behavioral patterns revealed in Figs. 5-9 would have
been dysfunctional and deceptive in terms of explaining the underlying data
structure. Interestingly, the pattern of nested complexity shown in Figs. 5-9
is not unique to the system generated by Eq. (4). Nearly every set of randomly
generated coefficients has produced a new pattern featuring the same highly
discontinuous behavior shown in Figs. 5-9. The one illustrated is typical.

It is worth noting that class of equations represented by Eq. (3) in-
cludes Mandelbrot’s generating equation when ry; = 1, 1) = =1, ryp = 2,
with the other rs equal to zero. Let the complex numbers z;, = (x;, y) and
u = (up u,). This means that Mandelbrot’s Set, perhaps the best-known
member of the class of chaotic systems in mathematics, is a member of our
class of metamodels of two-person social systems. Though perhaps far-
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o M,

Fig. 8. Yet further magnification of the system generated by Eq. (4). u, is in [-1.543386,
~1.360947], and u, is in [525325, 0.930975].

fetched, it is possible to offer an interpretation of Eq. (2) in social terms.
Suppose x and y measure two work groups’ social cohesiveness. The trans-
formation x,,; = x%-y%—u, characterizes a work group which tends to re-
main stable z = (0, 0) when x is just a bit more or less cohesive than y; the
transformation y,,-= 2xy,—u, characterizes a work group which tends toward
cohesiveness whenever either x or y are cohesive, and so on. We realize that
this is, in fact, armchair modeling; however, we insist that there are some
very important lessons to be gained from the fact that these simple models
produce such unusual patterns of behavior. One reason why these lessons
are important is that chaos seems to be quite common in social contexts.

CHAOS IS COMMON

Early on in this research, we worried that even though chaotic models
are theoretically interesting and seemed quite relevant to social systems,
they might actually be rare or exotic. Moreover, it seemed that if mathe-
matical chaos is rare, then by analogy chaos in social systems might be
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Fig. 9. The last magnified view of the system gencrated by Eq. (4), u, in [-1.510319,
-1.4943561], and u, in [.539523, .586172].

equally rare. However, many different values for the rs in Eq. (3) have
been tried, and so far all of them have exhibited chaotic behavior. Based
on this analysis, we, like Mandelbrot (1983) and other social scientists (e.g.,
Andersen & Sturis, 1988), feel that chaotic systems are quite common in
social contexts, and the only reason they are so rarely discussed is that they
are so difficult to identify or work with.

IMPLICATIONS OF CHAOS THEORY FOR SOCIAL SCIENCE
RESEARCH

Since chaos appears to be quite common in the social as well as physi-
cal environments, we have outlined several important implications of chaos
theory for social science researchers to consider in their research designs
and analytic approaches. These implications result from our fundamental
argument that many social systems reflect the central components of chaos
theory. In other words, they are iterative recursive systems that can exhibit
discontinuous changes over time and as such, require a careful reassessment
of traditional approaches to social science.
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Implication 1. So long as social sciences continue to rely on cross-sec-
tional studies, it is unlikely that they will discover and model the chaotic
nature of social systems.

How do social scientists typically study systems that fit the model of
chaos presented here? Suppose the equations like the ones we have been
using and graphically illustrating (e.g., Figs. 5-9) actually describe some
class of two-person social systems. Typical researchers might choose a num-
ber of systems “at random” and then measure the states x; and y; of the
entities and environments ux and uy, with as much precision as they can
afford (which is usually not very much). After collecting the data, they
would attempt to correlate the states and environments with some other
measurements, compare subgroups, and so on and.so forth.

Usually, social science measurements are cross-sectional or syn-
chronic. It is widely recognized that more attention should be paid to
change to more accurately assess human behavior (Cook & Campbell,
1979), but it is difficult to find affordable ways to do so. When longitudinal
studies are possible and utilized, however, measurements can be repeated
after some time 3, permitting correlations and comparisons of the data from
time ¢ and ¢t + 3. Suppose that 3 is a long enough time that evidence for
the divergence or nondivergence of x; and y, is easy to see. The researcher
might then use statistical analyses to attempt to build a model that predicts
similar outcomes for entities with similar initial states and environments.

To truly access a chaotic system, though, thousands of synchronic ob-
servations would be necessary, spaced out over a long enough time period
that potential divergent behavior would have time to manifest itself. Fur-
thermore, these data points would need to avoid the potential reactivity
bias of respondents providing information about themselves or their work-
place over so many points in time.

Implication 2. Poor analytical results (e.g., low Ry values and lack of
statistical significance) are to be expected when analyzing chaotic systems
with standard statistical methods.

When entities with similar starting points and environments end up
behaving differently, social scientists customarily conclude that they have
omitted some important variables, that their measurement is too rough, or
that the random or stochastic part of the problem has overwhelmed the
patterned part. To improve the research, they try harder to eliminate these
three problems in subsequent studies. Instead of trying harder, however,
we suggest that social scientists should try something different. Trying to
predict will fail if the systems are indeed chaotic. As we saw in the sets of
equations and corresponding Figs. 5-9, if the relevant states are near the
boundary between diverging and nondiverging parts of a chaotic system,
the accuracy of such statistical models could be spuriously low. Even if
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hundreds of very similar entities all diverge, another hundred with nearly
identical profiles might not, since the underlying causal laws themselves
produce discontinuous behavior. More importantly, there is no way before-
hand to predict who will diverge, and who will not, even in the unlikely
case that no variables have been omitted, measurement has been perfect,
and no stochastic error is present.

We have neither shown nor have we attempted to argue that the cha-
otic part of social behavior always dominates the nonchaotic part. The
question is not simply whether or not chaos exists, but the degree to which
chaos occurs and the degree to which such chaos is relevant to particular
research questions. Even chaotic systems can exhibit nonchaotic behavior
over much of their domain.

Consider the situations depicted in Fig. 10, where the x and y dimen-
sions represent two variables of interest in some study, the white area
represents combinations for which the systems under study diverge, and
the shaded area represents combinations which do not diverge, with a frac-
tally chaotic boundary. The four numbered rectangles represent particular
research projects. Just as an anthropologist might be interested in pygmies
while a basketball coach is interested in giants, it is possible that not all
studies of a chaotic system will be interested in those values for which chaos
occurs. It is easy to imagine a research project where all of the individuals
under study are well within the subset that doesn’t diverge (study 1), for
example workers in a profitable firm in a slow changing industry. Another
study might fall well within the subset that diverges (study 2), perhaps the
CEO has absconded with the funds, causing the workers to diverge away
from equilibrial behavior, and thus the fractal boundary is not germane to
those studies. If the profiles of the subjects of the investigation are all far
away from the domain of nondivergence (white areas), or conversely, if the
profiles are all tightly clumped deep within the domain of nondivergence
(black areas), then the chaos inherent in the system is relatively unimpor-
tant.

In the divergent case (study 2) an important issue, though, is the rate
of divergence. Using the commitment example again, the rate at which in-
dividuals lose their commitment is important, especially when the
commitment profiles can influence important outcomes such as turnover
and performance. In the nondivergent case (study 1), the interesting ques-
tions are about the range of states exhibited by various types of individuals
and how frequently they change. It would be useful, for example, to know
what range of values commitment can take, and how long the various types
of commitment last.

In study 3, the domain of interest is large, and thus divergent over
the most part. In many ways, study 3 would be similar to study 2. The
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Fig. 10. Four hypothetical studies of a chaotic system.

difference is that for a small part of the domain, the entities behave in a
substantially different way. Using typical statistical methods, we would ex-
pect the results of study 3 to be somewhat weaker (e.g., lower R2) than
study 2 if some of the cases under study happen to fall in the shaded area.
As a result, whatever model is fit to the “divergers” would fail for the “non-
divergers,” and vice versa. Divergers and nondivergers are essentially from
different populations, so any attempt to fit a single model will perform
poorly due to the underlying differences in sample composition.

In study 4, it is clear that some individuals fall on either side of the
boundary of a fractal set and chaos will dominate any other pattern. Near
the boundary, it is impossible to predict which individuals will diverge, and
which will not, because of the intrinsic unpredictability. From our perspec-
tive, the most significant research problems depend on whether the profiles
of entities place them near the boundary between divergence and nondi-
vergence. Observation of individual cases near this boundary reveals that
some diverge and some do not; however, further examination of the system
will only reveal finer details of chaotic behavior when examining the bound-
ary cases because of the “fractal” nature of the boundary. We emphasize
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that doing social science better, that is, better measurement, larger samples,
better statistical methods, and better theories, will never improve the ac-
curacy of prediction in situations like study 4. In fact, it may even make
things worse. Crude techniques will likely miss the fine chaotic structure
generated by the process, while accurate longitudinal measurement would
permit distinguishing among diverging and nondiverging individuals only
after, and not before, they had diverged or not diverged.

Implication 3. Use simulation techniques to study chaotic or complex
social systems, but do not expect to be able to mimic any specific actual
systems.

If better methods and research can actually result in less precise pre-
dictions of behavior, what should social scientists do? First, it seems clear
that researchers must determine whether their particular research problem
fits the chaotic profile. In other words, if the problem under examination
is characterized by a transformation system, with (1) entity states, (2) ex-
ternal environments, and (3) nonlinear iterations (i.e., current states
dependent upon previous states), the system will likely exhibit some degrees
of chaos over some of the domain. In this situation, the researcher must
determine whether the particular problem lies well within either the diver-
gent and nondivergent parts of the system (both of which are nonchaotic)
or near the border (which is inherently chaotic).

If the core problem lies near the border between the divergent and
nondivergent domains of the system, then predictive research approaches
are doomed to fail since such phenomena are discontinuous, and the only
way to know how the actual phenomenon will behave is to watch it behave
as we did earlier in Figs. 5-9. Unfortunately, sufficient observations could,
by themselves, have a dramatic reactive effect on the system (Nunnally,
1978).

There are approaches to explanation and understanding suited to the
study of chaotic systems, however. One way to increase our understanding
of chaos in the social world is to build a sufficiently detailed simulation,
and then analyze its behavior. A good example of this is the gradual re-
surgence of interest in simulation of decision making and work behavior
in organizations (Padgett, 1980; Carley, 1986; Masuch & LaPotin, 1989).
For nonsocial phenomena, where chaos has already been accepted as a
frequent state of affairs, researchers have become accustomed to building
simulation models which behave like the phenomenon under study, yet
have little expectation that they can actually build a predictive model of a
specific, empirical instance of the phenomenon (see Gleick, 1987 for a re-
view of these simulations).

Implication 4. Statistical technology will remain useful, but will play
a different role in the analysis of chaotic systems.
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“Good” models of social systems are those that produce repre-
sentations of social behavior which are in some way indistinguishable from
actual organizational patterns. If and when this occurs, we suggest that re-
searchers have obtained a reasonably good understanding of the
phenomenon. This is not the same as being able to predict the outcome
of any particular event. Even after characterizing the actual event as pre-
cisely as possible, being off by only a smidgen (e.g., only 10-! ) on some
key parameter could completely invalidate the outcome of the simulation
as a predictor in a chaotic social system. For example, in Figs. 5-9 we
showed that slight parameter changes revealed significantly different out-
comes from figure to figure.

This is not to say that the current arsenal of quantitative techniques
is useless. While such methods are normally used for prediction, in the
examination of chaotic social systems, these techniques can still help us
understand behavior. In fact, the “data” collected about a simulation will
probably be very “good” data. In many respects, traditional quantitative
methods will work much better in the study of simulated organizations than
they do for real organizations (see Masuch & LaPotin, 1989 for a good
example of such a simulation).

Implication 5. Qualitative methods will increase in importance when
studying potentially chaotic social systems.

In cases where it is preferred to study actual social behavior, along
with quantitative research methods, qualitative approaches to under-
standing chaotic social systems may prove beneficial. This is in part a
function of the complex nature of chaotic phenomena. In order to under-
stand chaos, it must be examined in its dynamic, unpredictable setting, as
it occurs. This is why high-powered computer-graphical representations of
systems have become so important in fields where the importance of chaos
has been recognized. The idea is to put a tremendous amount of data into
a form where the human perceptual system can make sense of it.

Quantitative techniques, for the most part, presuppose a static snap-
shot of the organization in the form of data. To capture the chaotic nature
of a transformation system, a massive amount of quantitative data is re-
quired, more than most researchers can afford to collect. On the other
hand, interviews and observation can provide pertinent information for un-
derstanding the negotiated, changing nature of chaotic social systems.
However, qualitative methods can be characterized as emphasizing validity
at the expense of reliability (Kirk & Miller, 1986). They can be just as
scientific and objective as nonqualitative studies, but by their nature they
are flexible and can quickly adapt to changing conditions in the field. In
a sense, the questions and responses in an interview or the events one
chooses to look at during observation are a large number of very small
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experiments, “designed” on the fly. While qualitative studies might incur
problems of intersubjectivity and low reliability, they can have the advan-
tage of efficiently producing a large amount of valid data which is necessary
to understand how a chaotic social system might behave.

Implication 6. Social science must develop a definition of “under-
standing” when analyzing chaotic systems.

An ongoing debate between quantitative and qualitative researchers
has often centered upon the desirability of prediction vs. understanding as
the primary goal of research. In the case of extremely chaotic social sys-
tems, however, the debate is over. The only attainable scientific goal is
understanding when researching a chaotic domain. However, it is some-
times hard for scientific writing which does not claim to be able to tell the
future to find an appropriate publication outlet. Essentially, in studies
where prediction and control are possible (i.e., not in the chaotic domain),
publications are a reasonable result. Yet, descriptive research may be the
only achievable goal for studies of chaotic systems, and this research goal
may be in direct contrast to the implicit or explicit assumptions of some
publication outlet editors or reviewers. As a result, studying potentially cha-
otic phenomena may well be a critical task for the social science community
to engage in, but it may be one with initially lower rewards than traditional
predictive and control research.

SUMMARY

Fundamentally, we have argued that chaotic systems which clearly ex-
ist in the physical world are probably quite common in the social domain.
In the past, as social scientists we have been generally unaware of chaotic
phenomena which are discontinuous, unpredictable, and yet governed by
a set of laws. Moreover, the bulk of social science research from our per-
spective has studied social phenomena as if they were continuous and
nonchaotic with cross-sectional research designs. This approach reflects in
part the idealized goal of prediction and control (inculcated in most gradu-
ate programs), our natural tendency to use research methods we already
know, and the typically prohibitive costs of collecting longitudinal data.

Given our arguments that many social phenomena are inherently cha-
otic and thus unpredictable, the research goal of understanding is the only
viable objective when studying chaotic social phenomena. In short, systems
exhibiting chaotic behaviors can only be understood, whereas, nonchaotic sys-
tems can be understood, predicted, and perhaps controlled. As a result, it is
fundamental that we assess carefully the nature of our research problems
and ascertain whether they potentially fit a chaotic profile. In addition, we
hope that readers will take chaos theory frameworks and apply them to a
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wider range of research problems at either a theoretical or philosophical level
in order to assess the potentially chaotic nature of social phenomena and
develop better methods for modelling such phenomena. By so doing, we are
convinced that social science will understand in much more depth and
breadth the chaos which indeed exists in the social systems that surround us.

APPENDIX: DISPLAYING CHAOTIC SYSTEMS

To display Mandelbrot’s Set, or any other chaotic systems, we make
use of the fact that pairs of numbers (or a complex number) can be equated
with points in the usual Cartesian coordinate system. Here we work through
two examples:

First, consider the point u = (2, 2). Starting with zo = 0 + 0; or (x,
y) = (0, 0), and converting u to its complex number equivalent, u — 2 +

2, compute z1 =3-u = 2-2 using Eq.(1) or x1 and y1 using Eq. (2).
Here is what happens if we repeat this iterative process a few times:

t Z

0+ 0i
-2-2
-2 + 6i
-34 - 26i
478 + 1766i
-2890274 + 1688194i

AW = O

oo oo

and before long, z, has careened off to very large values. To convert this
table to Eq. (3) notation, equate x with z’s real part, e.g., 478, and y to
the imaginary part, e.g., 1766.

Since u = (2, 2) causes z: to diverge to oo, we color the point (2, 2)
white — it is not in Mandelbrot’s Set.

Again, this time for u = (1/2, 1/2).

t z

0 0+ 0i

1 -5-.5i
2 -5+ .5i
3 -25 -.5i
4

—.6875 —.25i

56 -.5107613 — .1956228i
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57 ~2773912 — 3001669
58 —5131543 — 33347271
159 ~5107613 — .1956228i
160 ~.3990690 — 2486151i
161 —.4025534 — 3015708i
199 —4195819 — 2639228i
200 ~3936062 — 2785256
201 —4226506 — 2807412i

After 200 iterations, z, still hasn’t diverged, nor will it. Therefore, u = (1/2,
1/2) is in Mandelbrot’s Set, and we color it black. There is a notable ap-
proximation implicit here. To truly test a point, an infinite number of it-
erations is required. For purposes of putting a picture of Mandelbrot’s Set,
or any other chaotic system in this paper, we assume that a large number
of iterations is equivalent to an infinite number.

In any case, this is how any point in the plane can be tested. It either
belongs to Mandelbrot’s Set, or doesn’t. For other systems, such as Eq.
(4), the same process is used.
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