
Chapter 2

INTERPRETING LOGISTIC REGRESSION 
COEFFICIENTS

As is true for nonlinear transformations more generally, the effects of the 
independent variables in logistic regression have multiple interpretations. 
Effects exist for probabilities, odds, and logged odds, and the interpretation 
of each effect varies.

To preview, the effects of the independent variables on the logged odds 
are linear and additive—each X variable has the same effect on the logged 
odds regardless of its level or the level of other X variables—but the units 
of the dependent variable, logged odds, have little intuitive meaning. The 
effects of the independent variables on the probabilities have intuitive 
meaning but are nonlinear and nonadditive—each X variable has a different 
effect on the probability depending on its level and the level of the other 
independent variables. Despite the interpretable units, the effects on prob-
abilities are less easily summarized in the form of a single coefficient. The 
interpretation of the effects of the independent variables on the odds offers 
a popular alternative. The odds have more intuitive appeal than the logged 
odds and can still express effects in single coefficients, but the effects on 
odds are multiplicative rather than additive.

This chapter examines the multiple ways to interpret effects in logistic 
regression results. It gives particular attention to interpretations of probabil-
ity effects, the most informative but also the most complex way to under-
stand logistic regression results.

Logged Odds

One interpretation directly uses the coefficients obtained from the estimates 
of a logistic regression model. The logistic regression coefficients show the 
change in the predicted logged odds of experiencing an event or having a 
characteristic for a one-unit increase in the independent variables, holding 
other independent variables constant. The coefficients are similar to linear 
regression coefficients in that a single linear and additive coefficient sum-
marizes the relationship. The difference is that the dependent variable takes 
the form of logged odds.

Consider an example. Returning to the 2017 National Health Interview 
Survey (NHIS) data and the binary outcome measure of currently smokes, 
a simple model includes continuous measures of age (26–85+) and years of 
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Table 2.1  �Stata Output: Logistic Regression Model of Current Smoking, 
NHIS 2017

Smoker Coef.
Std. 
Err. z P>|z|

[95% Conf. 
Interval]

Education -.1830747 .0067791 -27.01 0.000 -.1963616 -.1697878

Age -.023966 .0011756 -20.39 0.000 -.0262701 -.0216619

Gender  
Male

 
.2535793

 
.0369909 6.86 0.000 .1810785 .3260801

Race

African 
American

-.0835037 .0574981 -1.45 0.146 -.1961979 .0291905

Native 
American

.2882139 .1523181 1.89 0.058 -.0103242 .586752

Asian 
American

-.8100691 .1092474 -7.41 0.000 -1.02419 -.595948

Multiple 
Race

.4363179 .1180186 3.70 0.000 .2050056 .6676301

Ethnicity
Hispanic

 
-1.039563

 
.0700205

 
-14.85 0.000

 
-1.176801

 
-.9023256

_cons 2.053864 .127611 16.09 0.000 1.803751 2.303976

education (0–18) plus categorical measures of gender (a dummy variable 
with males coded 1), race (four dummy variables with whites as the refer-
ent), and Hispanic ethnicity (with Hispanics coded 1). The sample size is 
23,786. Selected output from a logistic regression in Stata produces the 
results in Table 2.1.

For the continuous variables, the predicted logged odds of smoking on 
average decrease by .183 with a 1-year increase in education and by .024 
with a 1-year increase in age, controlling for other predictors. For the cat-
egorical variables, a change of one unit implicitly compares the indicator 
group to the reference or omitted group. The coefficient of .254 for gender 
indicates that the predicted logged odds of smoking are higher by .254 for 
men than women. The coefficients for race show that, compared to whites, 
the log odds of smoking are lower by .084 for African Americans, higher 
by .288 for Native Americans, lower by .810 for Asian Americans, and 
higher by .436 for multi-race respondents. The gap relative to whites is 
largest for Asian Americans with the controls, but the gap between Asian 
Americans and multi-race respondents is still larger. An additional measure 
shows that the logged odds of smoking are lower by 1.040 for Hispanics 
than non-Hispanics.
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The coefficients represent the relationship, as in ordinary regression, 
with a single coefficient. Regardless of the value of an independent 
variable—small, medium, or large—or the values of the other 
independent variables, a one-unit change has the same effect on the 
dependent variable. According to the model, the difference in the 
logged odds of smoking between white women and men is the same as 
the difference in the logged odds between Asian-American women and 
men. Similarly, the effect of education in the model does not differ 
between men and women or between any of the race-ethnic groups. 
Indeed, logistic regression aims to simplify the nonlinear and 
nonadditive relationships inherent in treating probabilities as dependent 
variables.

Despite the simplicity of their interpretation, the logistic regression coef-
ficients, as mentioned, lack a meaningful metric and offer little substantive 
information other than the sign. Statements about the effects of variables on 
changes in logged odds reveal little about the relationships and do little to 
help explain the substantive results. Interpreting the substantive meaning or 
importance of the coefficients requires something more than reporting the 
expected changes in logged odds.

Tests of Significance

Tests of significance often receive much attention, perhaps too much 
attention, in logistic regression. If the coefficients have little intuitive 
meaning in terms of substantive importance, it is easy to note the sta-
tistically significant and nonsignificant coefficients. Then, the signs of 
the significant coefficients offer a crude but quick summary of the 
results.

As in regression, the size of a coefficient relative to its standard error 
provides the basis for tests of significance in logistic regression. The 
logistic regression procedures in Stata and R present the coefficient 
divided by its standard error, which can be evaluated with the  
z distribution. The significance of the coefficient—the likelihood that the 
coefficient in the sample could have occurred by chance alone when the 
population parameter equals 0—is then interpreted as usual. However, 
since we know little about the small sample properties of logistic 
regression coefficients, tests of significance for samples less than 100 
prove risky (Long, 1997, p. 54).

Table 2.1 lists, along with the coefficients, the standard errors of the 
coefficients, the z values, the probabilities of the z values under the null 
hypothesis, and 95% confidence intervals around the coefficients. With a 
sample size of 23,786, all but two of the coefficients reach statistical 
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significance at the .001 level. The coefficients for Native Americans and 
African Americans are not significant at the usual .05 level. Although the 
logistic regression results treat race as four separate dummy variables, it is 
of course a single categorical measure. It is important to test for the 
significance of all the racial categories together using a procedure discussed 
in the next chapter.

The logistic regression procedure in SPSS calculates the Wald statistic for 
a (two-tailed) test of a single coefficient. Table 2.2 shows SPSS output from 
the same logistic regression model as presented above. The coefficients and 
standard errors are identical. The Wald test appears different but in fact is the 
same as the z value squared (Hosmer, Lemeshow, & Sturdivant, 2013).7 The 
Wald statistic in SPSS has a chi-square distribution with one degree of free-
dom. As before, all coefficients except two are significant at .001.

Statistical significance has obvious importance but depends strongly on 
sample size. The p values provide little information on the strength or sub-
stantive meaning of the relationship. Large samples, in particular, can pro-
duce significant p values for otherwise small and trivial effects. Despite the 
common reliance of studies on statistical significance (and the sign of the 
coefficient) in interpreting logistic regression coefficients, p values best 
serve only as an initial hurdle to overcome before interpreting the coeffi-
cient in other ways.

Table 2.2  �SPSS Output: Logistic Regression Model of Current  
Smoking, NHIS 2017

B S.E. Wald df Sig. Exp(B)

Step 
1a

Education −.183 .007 729.302 1 .000 .833

Age −.024 .001 415.612 1 .000 .976

Gender 
(1)

.254 .037 46.994 1 .000 1.289

Race 76.138 4 .000

Race (1) −.084 .057 2.109 1 .146 .920

Race (2) .288 .152 3.580 1 .058 1.334

Race (3) −.810 .109 54.982 1 .000 .445

Race (4) .436 .118 13.668 1 .000 1.547

Ethnicity 
(1)

−1.040 .070 220.420 1 .000 .354

Constant 2.054 .128 259.040 1 .000 7.798

aVariable(s) entered on step 1: Education, Age, Gender, Race, and Ethnicity.
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Odds

The second interpretation comes from transforming the logistic regression 
coefficients so that the independent variables affect the odds rather than 
the logged odds of the dependent variable. Recall that the odds equal the 
probability of a binary outcome divided by one minus the probability, or  
P/(1 – P). To find the effects on the odds, take the exponent or 
antilogarithm of the logistic regression coefficients. Exponentiating both 
sides of the logistic regression equation eliminates the log of the odds and 
shows the influences of the variables on the odds. The transformation 
from logged odds to odds for logistic regression with multiple predictors 
is as follows:

ln /1

 = 

/1 e

1 1 2 2

ln 1 1 1 2 2

P P b b X b X

e e e

P P

P P b b X b X

�� � � � �

�

� �

�� � �

0

0

,

,/

bb b X b X0 � � e  e1 1 2 2 .

With the odds rather than the logged odds as the outcome, the right-hand 
side of the equation becomes multiplicative rather than additive.

The odds are a function of the exponentiated constant e
b0  multiplied by 

the exponentiated product of the coefficient and X e( )1
b X1 1  and the expo-

nentiated product of the coefficient and X e( )b X
2

2 2 . The effect of each 
variable on the odds (rather than the logged odds) thus comes from taking 
the antilog of the coefficients. If not already presented in the output, the 
exponentiated coefficients can be obtained using any calculator by typing 
the coefficient and then the ex function. The exponentiated coefficients of 
−.183, −.024, and .254 from Tables 2.1 and 2.2 equal, respectively, .833, 
.976, and 1.289. These are conveniently listed in the last column of the 
SPSS output and can be easily obtained with options in Stata.

The fact that the equation determining the odds is multiplicative rather 
than additive shifts the interpretation of the exponentiated coefficients. In 
an additive equation, a variable has no effect when its coefficient equals 0. 
The predicted value of the dependent variable sums the values of the vari-
ables times the coefficients; when adding 0, the predicted value does not 
change. In a multiplicative equation, the predicted value of the dependent 
variable does not change when multiplied by a coefficient of 1. Therefore, 
0 in the additive equation corresponds to 1 in the multiplicative equation. 
Furthermore, the exponential of a positive number exceeds 1 and the expo-
nential of a negative number falls below 1 but above 0 (as the exponential 
of any number is always greater than 0).
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For the exponentiated coefficients, then, a coefficient of 1 leaves the 
odds unchanged, a coefficient greater than 1 increases the odds, and a 
coefficient smaller than 1 decreases the odds. Moreover, the more 
distant the coefficient from 1 in either direction, the greater the effect in 
changing the odds. Recall as well that the odds are not symmetric 
around 1. They vary between 0 and 1 on one end, but from 1 to positive 
infinity on the other.

Interpretation

To illustrate the interpretations of the exponential coefficients, or the 
effects on odds, Table 2.3 presents logistic regression output from R, again 
using the model of current smoking. The commands required to obtain the 
exponentiated logistic regression coefficients and the format of the output 
differs from Stata and SPSS. But the results are the same.

Table 2.3  �R Output: Logistic Regression Model of Current Smoking, 
NHIS 2017

Coefficients:

Estimate
Std. 

Error. z value Pr(>|z|)
(Intercept) 2.053864 0.127611 16.095 < 2e-16 ***
Education -0.183075 0.006779 -27.006 < 2e-16 ***
Age -0.023966 0.001176 -20.387 < 2e-16 ***
Gender 0.253579  0.036991 6.855 7.12e-12 ***
Race.f2 -0.083504 0.057498 -1.452 0.146422
Race.f3 0.288214 0.152318 1.892 0.058466 .
Race.f4 -0.810069 0.109247 -7.415 1.22e-13 ***
Race.f5 0.436318 0.118019 3.697 0.000218 ***
Ethnicity.f1 -1.039563 0.070020 -14.847 < 2e-16 ***

Odds Ratio and Confidence Interval

(Intercept) 7.7979707 6.0750055 10.0186332
Education 0.8327060 0.8216888 0.8438194
Age 0.9763189 0.9740669 0.9785661
Gender 1.2886296 1.1985124 1.3855425
Race.f2 0.9198877 0.8210606 1.0286780
Race.f3 1.3340426 0.9826226 1.7869569
Race.f4 0.4448273 0.3570509 0.5481475
Race.f5 1.5470004 1.2225119 1.9425137
Ethnicity.f1 0.3536091 0.3077680 0.4049986
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For example, exponentiating the coefficient of −.183 indicates that the 
predicted odds of smoking are reduced by a multiplicative factor of .833 
with a 1-year increase in years of education, holding the other predictors 
constant. If, hypothetically, the odds of smoking for someone with 12 years 
of education equal 0.300, then the predicted odds of smoking for someone 
with 13 years of education equal .300 × .833 or .250. The exponentiated 
coefficient for age of .976 indicates that the odds of smoking are reduced 
by a multiplicative factor of .976 with 1-year increase in age. If the 
predicted odds at age 25 are .400, then the predicted odds at age 26 would 
fall to .390 (or .400 × .976).

The same relationships can be restated in terms of odds ratios. The ratio 
of the predicted odds of smoking for someone with 13 years of education 
to someone with 12 years of education, or for someone with 18 years of 
education to someone with 17 years of education, equals the exponentiated 
logistic regression coefficient of .833. The ratio of predicted odds for 
someone aged 26 years (or age 56) to someone aged 25 years (or age 55) 
equals .976. Thus, the exponentiated coefficient shows the ratio of odds 
for those one-unit higher to those one-unit lower on the independent 
variable.

For categorical predictors in the form of dummy variables, a similar 
interpretation follows. The exponentiated coefficient for men of 1.289 
indicates that their odds of smoking are higher than those for women by 
a factor of 1.289. Here, a one-unit increase defines the comparison of men 
to the reference group of women. If the predicted odds of smoking equal 
.200 for women, they equal .200 × 1.289 or .258 for men. Equivalently, 
the ratio of the odds of smoking for men to women is 1.289. The 
exponentiated coefficient of 1.547 shows higher odds of smoking for 
multi-race respondents compared to whites. The odds for Hispanics are 
lower by a factor of .354 than non-Hispanics, and the ratio of odds for 
Hispanics to non-Hispanics is .354.

Since the distance of an exponentiated coefficient from 1 indicates the size 
of the effect, a simple calculation can further aid in interpretation. The 
difference of a coefficient from 1 exhibits the increase or decrease in the odds 
for a unit change in the independent variable. In terms of a formula, the 
exponentiated coefficient minus 1 and times 100 gives the percentage 
increase or decrease due to a unit change in the independent variable:

% .� 1 1� �� ��eb 00

For education, the exponentiated coefficient says that the odds of smok-
ing decline by 16.7% or are 16.7% lower with an increase of 1 year in 
education. This appears more meaningful than to say the logged odds 
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decline by .183. The size of the effect on the odds also depends on the units 
of measurement of the independent variables—the change in odds for vari-
ables measured in different units do not warrant direct comparison. Still, 
the interpretation of percentage change in the odds has intuitive appeal.8

For men, the exponentiated logistic regression coefficient of 1.289 
means that the odds of smoking are 28.9% higher than for women. The 
exponentiated coefficient for Hispanics of .354 indicates that their odds of 
participating are 64.6% lower than for non-Hispanics.

In interpreting the exponentiated coefficients, remember that they refer 
to multiplicative changes in the odds rather than probabilities. It is incorrect 
to say that an additional year of education makes smoking 16.7% less prob-
able or likely, which implies probabilities rather than odds. More precisely, 
the odds of smoking are .833 times smaller or 16.7% smaller with an addi-
tional year of education.

Probabilities

The third strategy of interpreting the logistic regression coefficients involves 
translating the effects on logged odds or odds into the effects on probabilities. 
Since the relationships between the independent variables and probabilities 
are nonlinear and nonadditive, they cannot be fully represented by a single 
coefficient. The effect on the probabilities has to be identified at a particular 
value or set of values. The choice of values to use in evaluating the effect on 
the probabilities depends on the concerns of the researcher and the nature of 
the data, but an initial strategy has the advantage of simplicity: examine the 
effect on the probability for a typical case.

Before interpreting probability effects from logistic regression, it helps to 
introduce two related concepts of predicted probabilities and marginal effects.

First, logistic regression produces a predicted value for each observation 
in the data, but the predicted value can take the form of logged odds or 
probabilities. The predicted logits or logged odds are calculated for each 
observation by substituting that observation’s values on the independent 
variables, multiplying by the estimated logit coefficients, and summing 
the products. The predicted probabilities can then be obtained by using the 
formula transforming logits to probabilities. As presented in Chapter 1, the 
formula shows that the probabilities are a function of the logits, Li:

P /i
L Le ei i� �( ) ( ).1

Of course, the predicted values can be obtained directly from statistical 
packages. For example, the logistic regression model of smoking in Tables 2.1 
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to 2.3 can generate predicted logits and probabilities for each of the 23,786 
observations. The summary statistics from Stata in Table 2.4 list the following:

•	 The outcome (Smoker) has values of only 0 or 1, with a mean of .154 
(i.e., 15.4% of the sample currently smokes).

•	 The predicted logits from the model vary between −4.649 and 1.636. 
Persons with negative values show relatively low predicted smoking 
and those with positive values show relatively high predicted smok-
ing. The predicted logits are skewed toward nonsmoking.

•	 The predicted probabilities, which have limits of 0 and 1, vary from 
.009 to .837. Persons with probabilities below .5 are less likely to 
smoke and persons with probabilities above .5 are more likely to 
smoke. The mean predicted probability is the same as the mean of the 
dependent variable and shows that most of the sample does not smoke.

The table also presents the comparison of the predicted probabilities from a 
linear regression, which have no limits of 0 and 1. They vary between −.168 
and .595. These values illustrate the point that, unlike linear regression,  
logistic regression keeps predicted probabilities within the limits.

Second, marginal effects refer to the influence of independent variables 
on a dependent variable. A marginal effect is defined in general terms as the 
change in the expected value of a dependent variable associated with a 
change in an independent variable, holding other independent variables 
constant at specified values. In linear regression, the marginal effect is 
simply the slope coefficient for an independent variable. In logistic regres-
sion, however, the marginal effect on probabilities varies. It is not fully 
represented by a single coefficient.

Table 2.4  �Stata Output: Summary Statistics for Observed Values of 
Current Smoking and Predicted Values From Logistic 
Regression and Regression Models of Current Smoking, 
NHIS 2017

Variable Obs Mean Std. Dev. Min Max

Smoker 23,786 .1539141 .3608739 0 1

Logit_
Smoker

23,786 -1.837902 .6406989 -4.648903 1.636395

Prob_Smoker 23,786 .1539141 .0829396 .0094813 .8370438

Reg_Smoker 23,786 .1539141 .0797695 -.1680726 .5951874
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There are two varieties of marginal effects. One involves marginal 
change in continuous independent variables and the other involves discrete 
change in categorical independent variables. The two types of marginal 
effects associated with each type of variable involve different calculations 
and strategies for interpreting the results.

Continuous Independent Variables

One way to understand the marginal effect of a continuous independent 
variable on probabilities involves calculating the linear slope of the tangent 
line of the nonlinear curve at a single point. The slope of the tangent line is 
defined by the partial derivative of the nonlinear equation relating the inde-
pendent variables to the probabilities (Agresti, 2013, p. 164). The partial 
derivative shows the change in the outcome for an infinitely small or mar-
ginal change in the predictor. More intuitively, it represents a straight line 
that meets the logistic curve at a single point. Figure 2.1 depicts the tangent 
line where the logistic curve intersects Y = P = .76. The tangent line identi-
fies the slope only at that particular point, but it allows for easy interpreta-
tion. Its slope shows the linear change in the probability at a single point on 
the logistic curve.

The change in probability or the linear slope of the tangent line comes 
from a simple equation for the partial derivative. The partial derivative 
equals

� � � � � �P X  b P Pk/ 1 k ( ).

Simply multiply the logistic regression coefficient by the selected probabil-
ity P and 1 minus the probability.

The formula for the partial derivative nicely reveals the nonlinear effects 
of an independent variable on probabilities. The effect of b (in terms of 
logged odds) translates into a different effect on the probabilities depending 
on the level of P. The effect will be at its maximum when P equals .5 since 
.5 × .5 = .25, .6 × .4 = .24, .7 × .3 = .21 and so on. The closer P comes to 
the ceiling or floor, the smaller the value P(1 – P), and the smaller the effect 
a unit change in X has on the probability.

Multiplying the coefficient times .5 × .5 shows the maximum effect on 
the probabilities, but may overstate the influence for a sample in which the 
split on the dependent variable is not so even. Substituting the mean of the 
dependent variable, P, in the formula gives a more typical effect. For smok-
ing, the logistic regression coefficient for years of education equals −.183, 
and the mean of the dependent variable or the probability of smoking 
equals .154. The marginal change at the mean equals −.183 × .154 × .846  
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or −.024. A marginal or instantaneous change in education reduces the 
probability of smoking by .024. The effect reaches its maximum of −.046 
when P = .5.

While this example illustrates the logic underlying marginal effects for 
continuous variables in logistic regression, it oversimplifies things. A ques-
tion remains: At what values should the marginal effect be calculated? We 
want to calculate a marginal effect in a way that best represents the relation-
ships for the sample. To do that, three types of marginal effects are com-
monly recommended (Breen, Karlson, & Holm, 2018; Long & Freese, 
2014; Williams, 2012). There are marginal effects at the means, marginal 
effects at representative values, and average marginal effects (AME). Con-
sider each in turn.

Three Types of Marginal Effects

First, the marginal effect at the means is calculated when all independent 
variables in the model take their mean value. The predicted probability is 
obtained from multiplying each logistic regression coefficient times the 
mean of the corresponding independent variable, summing the products 
and the intercept, and transforming the predicted logit into a predicted 
probability. Then, this predicted probability can be used with the formula 
for the partial derivative to calculate marginal effects for each continuous 
independent variable.

Figure 2.1  �Tangent line of logistic curve at Y = P = .76.
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Table 2.5  �Stata Output: Marginal Effects at Means From Logistic 
Regression Model of Current Smoking, NHIS 2017

Expression       : Pr(Smoker), predict()

dy/dx w.r.t. :�  �Education Age 1.Gender 2.Race 3.Race 4.Race 
5.Race 1.Ethnicity

at    : Education = 13.90932 (mean)
   Age = 54.294 (mean)

   0.Gender = .5514588 (mean)

   1.Gender = .4485412 (mean)

   1.Race = .8100143 (mean)

   2.Race = .1101909 (mean)

   3.Race = .0113092 (mean)

   4.Race = .0501976 (mean)

   5.Race = .0182881 (mean)

   0.Ethnicity = .8853107 (mean)

   1.Ethnicity = .1146893 (mean)

dy/dx
Delta-method
Std. Err. z P>|z|

[95% Conf. 
Interval]

Education -.0216849 .0007684 -28.22 0.000 -.023191 -.0201788
Age -.0028387 .0001353 -20.98 0.000 -.0031039 -.0025736

Gender  
Male .030344 .0044637 6.80 0.000 .0215954 .0390926

Race  
African 
American

 
-.0098693

 
.0066399 -1.49 0.137 -.0228833 .0031447

Native 
American

.0388422 .0224991 1.73 0.084 -.0052551 .0829396

Asian 
American

-.0733998 .0072834 -10.08 0.000 -.0876749 -.0591247

Multiple 
Race

.0618207 .0190291 3.25 0.001 .0245243 .0991171

Ethnicity 
Hispanic

 
-.0924188

 
.0044527 -20.76 0.000 -.1011459 -.0836917

Note: dy/dx for factor levels is the discrete change from the base level.

Marginal effects at the means are best done with program commands. 
In Stata, the margins command generates marginal effects at the means. 
Table 2.5 displays the output from a margins command following the 
logistic regression (“margins, dydx(*) atmeans”). For the moment, we can 
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focus on the two continuous measures of education and age. The results 
show a marginal effect of education, or the effect for an infinitely small 
change in education is −.022 when all independent variables are at their 
mean values or for a hypothetical person who is average on all 
characteristics. This indicates that the expected probability of smoking 
decreases by .022 with a marginal change in education. Alternatively, one 
can view −.022 as the slope of the tangent line at the predicted probability 
when the independent variables are at their means. Note that the top of 
the table lists the means for each independent variable used in the 
calculations.

These marginal effects make for a more intuitive interpretation than 
logged odds or odds. The coefficients of −.022 for education and −.003 for 
age represent changes on a probability scale ranging from 0 to 1. Although 
interpretations still depend on the measurement units and variation of the 
independent variables, they rely on more familiar units for the dependent 
variable. Always remember, however, that these effects are specific to a 
predicted probability determined by the means of the independent 
variables.

Second, marginal effects at representative values use a typical case on 
the independent variables rather than the means of the independent 
variables. Note that the means do not typically refer to the characteristics 
of an actual person. In the NHIS sample, the mean education of 13.91 and 
the mean age of 54.29 are not observed values for the measures. The 
concern is more obvious for the categorical variables. The mean for gender 
is .449 (44.9% male) and the mean for African American is .110. Obviously, 
the NHIS categorical measures do not treat gender or race as a proportion. 
To represent a typical case, we might select values for someone with  
12 years of education, 45 years old, male (Gender = 1), white (Race = 1), 
and non-Hispanic (Ethnicity = 0).

Margins in Stata can again be used to obtain these marginal effects 
(“margins, dydx(*) at (Education = 12 Age = 45 Gender = 1 Race = 1 
Ethnicity = 0)”). Table 2.6 lists the values used to obtain the predicted 
probability and the marginal effects at those values. The predicted 
probability for a person with these representative values is .275, which 
is higher than the predicted probability of .137 when the independent 
variables are at their means. The expected change in the probability of 
smoking for an infinitely small change in education at these 
representative values is −.037 (vs. −.022 previously). Other models at 
different representative values could give substantially different 
results, however.

Third, the average marginal effect is obtained differently. It first calcu-
lates the marginal effect for each observation by using the actual values 
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of each observation rather than the means or representative values. For an 
independent variable, there are as many marginal effects as observations 
in the analysis. It then calculates the average of those marginal effects. 
Note the difference in strategy. The marginal effects at the means and 
representative values define a single marginal effect for each independent 
variable. The average marginal effect defines a distribution of marginal 
effects for the sample and then computes the mean of the distribution for 
each independent variable.

Expression    :  Pr(Smoker), predict()

dy/dx w.r.t.  : � Education Age 1.Gender 2.Race 3.Race 4.Race 
5.Race 1.Ethnicity 

at	        :  Education	 =	 12
	         Age		  =	 45
	         Gender		 =	  1
	         Race		  =	  1
	            Ethnicity	 =	  0

dy/dx
Delta-method 
Std. Err. z P>|z|

[95% Conf. 
Interval]

Education -.0365248 .0016434 -22.23 0.000 -.0397457 -.0333038
Age -.0047814 .0002657 -18.00 0.000 -.0053021 -.0042607

Gender  
Male

 
.0476225 .0069547 6.85 0.000 .0339915 .0612535

Race  
African 
American

-.0163434 .0111053 -1.47 0.141 -.0381095 .0054226

Native 
American

.0610315 .0339325 1.80 0.072 -.0054749 .127538

Asian 
American

-.1307434 .014079 -9.29 0.000 -.1583378 -.103149

Multiple 
Race

.0948479 .0273988 3.46 0.001 .0411472 .1485486

Ethnicity 
Hispanic -.1568755 .0088443 -17.74 0.000 -.17421 -.139541

Note: dy/dx for factor levels is the discrete change from the base level.

Table 2.6  �Stata Output: Marginal Effects at Representative Values From 
Logistic Regression Model of Current Smoking, NHIS 2017

Do n
ot c

opy
, po

st, 
or d

istr
ibu

te

Copyright ©2021 by SAGE Publications, Inc. 
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.



   33

Table 2.7 presents the AME obtained from the margins command in 
Stata (“margins, dydx(*)”). The AME are similar but not identical to those 
obtained at the means or representative values. Holding other covariates 
constant, the average change in smoking for an infinitely small change in 
education is −.023 (vs. −.022 and −.037 previously).

Each type of marginal effect has strengths and weaknesses (Muller & 
MacLehose, 2014). The marginal effects at the means represent central 
tendency and in that sense are typical of the sample. However, the means 
on all independent variables define a hypothetical example rather than a 
real person, group, organization, or other unit of analysis. The marginal 
effects at representative values are based on observed values of the inde-
pendent variables but may not be typical of the sample. Although research-
ers will select key groups or characteristics that are common in the sample, 
the representative values miss those in other groups or with other 

Expression   :  Pr(Smoker), predict()
dy/dx w.r.t. : �Education Age 1.Gender 2.Race 3.Race 4.Race 

5.Race 1.Ethnicity 

dy/dx
Delta-method 
Std. Err. z P>|z|

[95% Conf. 
Interval]

Education -.0225815 .0008187 -27.58 0.000 -.024186 -.020977
Age -.0029561 .0001436 -20.59 0.000 -.0032375 -.0026747

Gender  
Male .0315158 .0046228 6.82 0.000 .0224553 .0405763
Race  

African 
American

-.0102466 .0069154 -1.48 0.138 -.0238005 .0033073

Native 
American

.0396333 .0226697 1.75 0.080 -.0047986 .0840652

Asian 
American

-.0783194 .0079958 -9.80 0.000 -.0939909 -.0626479

Multiple 
Race

.0626203 .0189212 3.31 0.001 .0255354 .0997052

Ethnicity 
Hispanic -.0988868 .0049608 -19.93 0.000 -.1086097 -.0891638

Note: dy/dx for factor levels is the discrete change from the base level.

Table 2.7  �Stata Output: Average Marginal Effects From Logistic 
Regression Model of Current Smoking, NHIS 2017
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characteristics. The average marginal effect can be viewed as the effect for 
a case picked at random from the sample (Breen et al., 2018). It has the 
advantages of using all observed values in the sample and thereby repre-
senting everyone. Long and Freese (2014, Chapter 6) offer a qualified 
recommendation for the average marginal effect or AME: “Broadly speak-
ing, we believe that the AME is the best summary of the effect of a 
variable.”

Note that, even after selecting one of the marginal effects, any single 
coefficient showing the change in probability is potentially misleading. The 
coefficient will not fully reflect the nonlinear and nonadditive relationship 
of the independent variables with the probabilities. To get more information 
but also add more complexity, a researcher might compute marginal effects 
for a range of values on the independent variables and present the marginal 
effects for the extremes as well as the middle of the distribution. Ways to 
present a more complete summary of the range of influences of a variable 
on probabilities are discussed in more detail below.

Categorical Independent Variables

The partial derivative works best with continuous variables for which 
small changes in the independent variables are meaningful. For dummy 
variables, the relevant change occurs from 0 to 1, and the tangent line for 
infinitely small changes in X makes little sense. Instead, the marginal effect 
for categorical variables is best shown by the discrete change from one 
category to another. It is possible to compute predicted probabilities for two 
categories and then measure the difference in the probabilities. This mar-
ginal effect refers to a discrete change in the independent variable rather 
than a marginal change. The two may approximate one another, but calcu-
lating the predicted probabilities for categorical independent variables 
based on the discrete change makes more sense. Remember, however, that 
the marginal effect based on differences in predicted probabilities, like the 
partial derivative, varies across points on the logistic curve and specific 
predicted probabilities.

The three strategies for estimating marginal effects on probabilities for 
continuous independent variables apply to categorical independent variables. 
Each strategy finds a predicted probability for the omitted group, finds a 
predicted probability for the dummy variable group, and subtracts the former 
probability from the latter. The differences in strategies come from setting the 
values assigned to the other independent variables. The three most common 
strategies can be reviewed and adapted to categorical independent variables 
using the same model and examples in Tables 2.5 to 2.7.
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First, the marginal effect at the means uses the predicted values for cat-
egorical variables when one value is 0, the other value is 1, and all other 
independent variables in the model take their mean values. The discrete 
change in the predicted values from 0 and 1 for the categorical comparison 
defines the marginal effect.

In Table 2.5, the Stata output notes at the bottom that the marginal effect 
(symbolized by dy/dx) for factor levels (values of a categorical independent 
variable) is the discrete change from the base level. For gender, the base 
level or reference category refers to females, and the marginal effect for 
males of .030 shows that the expected probability of smoking is higher for 
males than females by .030, when the other independent variables are held 
constant at their means. With education, age, time, and the marital status 
categories taking their mean values, additional runs show that the predicted 
probability of smoking is .1244 for females and .1547 for males. The dif-
ference of .0303 is the same as the gender coefficient for males in Table 2.5.

For race, the base level or reference category is white. The coefficients 
of −.010 for African Americans, .039 for Native Americans, −.073 for 
Asian Americans, and .062 for multi-race respondents show considerable 
diversity in smoking across the groups. The marginal effect is largest for 
Asians, with the difference in expected probabilities of −.073 compared to 
whites, when other independent variables are held constant at their means.

Second, marginal effects at representative values use a typical case on 
the independent variables rather than the means of the independent varia-
bles. To reexamine the discrete change for gender, the predicted value for 
both males and females can be obtained when the other independent vari-
ables are set, for example, at 12 years of education, 45 years old, white 
(Race = 1), and non-Hispanic (Ethnicity = 0). The results are shown in 
Table 2.6. The marginal effect for gender equals .048, which is larger than 
the marginal effect at the means. The marginal effect for Hispanics relative 
to non-Hispanics is −.157 at the selected representative values. As always, 
using different representative values can give substantially different results.

Third, the AME for the categorical variables are listed in Table 2.7. The 
average marginal effect calculates the predicted probability for each obser-
vation when gender equals 0 and the other independent variables equal their 
observed values. The same is done when gender equals 1 and the difference 
is obtained for each observation. The average of the differences equals the 
average marginal effect. Table 2.7, which presents the average marginal 
effect for all independent variables, shows coefficients of .032 for gender 
and −.099 for Hispanic ethnicity.

The same strengths and weaknesses in the three summary marginal effects 
of continuous independent variables apply to categorical independent variables. 
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The interpretation shifts from the change in probabilities due to an infinitely 
small change in a continuous independent variable to the discrete change 
from a base level to a group level for a categorical independent variable. 
Otherwise, the issues faced in interpreting probability effects still apply. 
Along with selecting the type of marginal effect, one should consider 
examining the marginal effects at varied levels of the independent variables. 
An easy way to do this is discussed below.

Graphing Marginal Effects

The three ways to summarize marginal effects—at the means, at repre-
sentative values, and the average marginal effect—do not represent the 
variation of the effects around the average. A single coefficient is quite 
useful but incomplete. One way to capture this variation is to select a set of 
values at which to calculate marginal effects. For example, the marginal 
effect for a continuous variable can be calculated when the variable takes 
values –2, –1, 0, 1, and 2 standard deviations from its mean and the other 
independent variables are at their means, at representative values, or actual 
values in AME. The AME of education are −.038, −.030, −.022, −.015, and 
−.010, respectively, at –2, –1, 0, 1, and 2 standard deviations from its mean. 
The marginal effects get weaker at higher levels of education, as the prob-
ability of smoking gets lower. Alternatively, marginal effects might be 
calculated when a continuous independent variable takes its maximum, 
mean, and minimum values. The marginal effects of education are −.039 at 
0, the education minimum, −.022 at the education mean, and −.013 at 18, 
the education maximum.

An easier procedure involves graphing the marginal effects. In Stata, the 
average marginal effect for each value of education again comes from the 
margins command (“margins, dydx(education) at(education = (0(1)18))”) 
followed by “marginsplot.” The results of this command are shown in  
Figure 2.2 The graph plots the average marginal effect on the Y axis for 
each observed value of education on the X axis. The bars represent the 95% 
confidence interval around the marginal effects. The scale for the marginal 
effects in the Y axis varies from only −.05 to −.01 and the marginal effects 
range from −.013 to −.043.

Note the nonlinear relationship of education with the probability of 
smoking. The graph reveals the strongest marginal effects for those with 
few years of completed schools, who also tend to smoke more than others. 
The peak negative effect of −.043 occurs with four years of education. The 
marginal effect moves toward 0, reaching −.013 at 18 years of education. 
The pattern of the marginal effects reaffirms the point made early that 
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marginal effects are strongest when predicted probabilities are near .5, a 
level at which those with little education come closest. As smoking falls to 
levels farther from .5 and closer to 0 for those with advanced education, the 
negative marginal effect becomes weaker. Similar results could be obtained 
for marginal effects at the means or marginal effects at representative 
values.

The pattern of marginal effects in Figure 2.2 demonstrates the nonlinear-
ity in probability effects. That is, the average marginal effect of education 
varies in a nonlinear pattern with the level of education. Graphs can also 
demonstrate nonadditivity, or how the marginal effect of one independent 
variable on probabilities varies with the level of another variable. Consider 
gender and age. Figure 2.3 shows the marginal effect from the discrete 
change in gender for each age. The marginal effect of being male is larger 
at younger ages when current smoking is higher. The marginal effect 
decreases at older ages, as many former smokers have quit or died. The 
marginal effect falls from .045 at age 26 to .018 at age 85 and over. The 
change is not large but nonetheless illustrates how the difference between 
men and women varies with age.

Figure 2.2  �Average marginal effects of education at values of education 
from logistic regression model of current smoking, NHIS 
2017.
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Figure 2.3  �Average marginal effects of gender (1 = males) at values of 
age from logistic regression model of current smoking, 
NHIS 2017.
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Figure 2.4  �Average marginal effects of education at values of age from 
logistic regression model of current smoking, NHIS 2017.
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Nonadditivity also holds for continuous independent variables. Figure 
2.4 plots the average marginal effect of education for selected ages. The 
negative marginal effect of education is strongest at the youngest ages, 
when current smoking is highest. It becomes weaker and closer to 0 at older 
ages when current smoking is lowest. Although the effect of education on 
the logged odds is the same across all ages, the effects on probabilities are 
nonadditive.

Graphing Predicted Probabilities

Marginal effects examine the change in predicted probabilities for an 
infinitely small change or discrete change in the independent variables. 
Some insight into the nature of marginal effects and, more generally, into 
the relationships of the independent variables with the dependent variable 
can come from examining the predicted probabilities themselves. Graphing 
of predicted probabilities, like graphing of marginal effects, proves 
helpful.

Figure 2.5 graphs the average predicted probabilities of men and women 
at selected ages (when the other independent variables take their observed 
values for each case). The predicted probabilities on the Y axis range from 
just above .05 to just below .3. The probability scale differs from the 

Figure 2.5  �Predicted probabilities by gender and age from logistic 
regression model of current smoking, NHIS 2017.
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smaller scale for marginal effects. According to the graph, women have a 
lower probability of smoking than men. Furthermore, the gap between men 
and women, which reflects the average marginal effect of gender, varies 
with age. Although the change is not large, the gap between women and 
men appears narrower at older than younger ages. This affirms findings for 
the marginal effects of gender: Figure 2.3 shows these effects get smaller at 
older ages. The lines below again demonstrate the nonlinear and nonaddi-
tive relationships of gender and age with the predicted probabilities of 
smoking.

As one more example, Figure 2.6 presents the average predicted proba-
bilities for non-Hispanics and Hispanics by education level. The line for 
non-Hispanics is higher than for Hispanics, but it declines more quickly 
with education. The gap thus narrows with education.

It is worth comparing the predicted probabilities from the logistic regres-
sion to the predicted probabilities from linear regression. Using the same 
independent variables as the logistic regression, the linear regression plus 
the margins command produces Figure 2.7. The predicted probabilities 
form a straight line, and the gap between non-Hispanics and Hispanics 
across years of education is constant. In other words, the marginal effects 
of Hispanic ethnicity and education are both linear and additive. The two 

Figure 2.6  �Predicted probabilities by Hispanic ethnicity and education 
from logistic regression model of current smoking, NHIS 
2017.

0

P
r(

S
m

ok
er

)

.2

.4

.6

.8

0 1 2 3 4 5 6 7 8 9
Years of Education Attained

Non-Hispanic Hispanic

10 11 12 13 14 15 16 17 18

Predictive Margins of Ethnicity With 95% Cls

Do n
ot c

opy
, po

st, 
or d

istr
ibu

te

Copyright ©2021 by SAGE Publications, Inc. 
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.



   41

straight and parallel lines from the linear regression in Figure 2.7 contrast 
with the curved and nonparallel lines from the logistic regression in Figure 
2.6. The linear regression shows the same gap at all levels of education, 
while the logistic regression shows a larger gap at low education than at 
high education. Reflecting this difference, the logistic regression further 
shows higher predicted smoking for non-Hispanics at low levels of educa-
tion than the linear regression. Although the differences between the graphs 
are not huge, the one for the logistic regression appears more accurate.

Standardized Coefficients

Regression programs ordinarily present standardized coefficients along 
with unstandardized coefficients. Many find standardized coefficients to be 
helpful in interpreting regression results. Unstandardized coefficients show 
relationships between variables measured in their original metric. If the 
measurement units differ, as is typically the case, the unstandardized 
coefficients are not directly comparable. For the model of current smoking, 
a unit change in gender (from females to males) obviously differs from a 
1-year change in completed education. Even comparisons of education and 

Figure 2.7  �Predicted probabilities by Hispanic ethnicity and education 
from linear regression model of current smoking, NHIS 
2017.

0 1 2 3 4 5 6 7 8 9
Years of Education Attained

10 11 12 13 14 15 16 17 18

Non-Hispanic Hispanic

–.2

Li
ne

ar
 P

re
di

ct
io

n

0

.2

.4

.6
Predictive Margins of Ethinicity With 95% Cls

Do n
ot c

opy
, po

st, 
or d

istr
ibu

te

Copyright ©2021 by SAGE Publications, Inc. 
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.



42    

age are risky, despite both being measured in terms of years. For the 
sample, age varies from 26 to 85 and has a standard deviation of 16.6. In 
contrast, education varies from 0 to 18, with a standard deviation of 2.85. 
A 1-year change has a different meaning for these two variables.

Standardized coefficients have the advantage of showing relationships 
when the independent and dependent variables have a common scale. They 
can be understood as regression coefficients when all variables are meas-
ured as standard scores with means of 0 and standard deviations of 1. They 
then show the expected change in standard units of the dependent variable 
for a standard unit change in the independent variables, controlling for 
other independent variables. Given the comparable units of the variables, 
standardized coefficients help in comparing the relative strength of the 
relationships.

Unlike multiple regression programs, logistic regression programs do 
not routinely compute standardized coefficients. The problem with stand-
ardized coefficients in logistic regression stems partly from ambiguity in 
the meaning of standard scores or standard units for a binary dependent 
variable. Standardizing a binary variable merely translates values of 0 and 
1 into two other values. If the mean of the dependent variable Y equals the 
probability P, the variance equals P(1 – P) (Agresti, 2013, p. 117). Then, 
the standard score z has only two values:

Y z Pvalues of 1 have values equal to 1 / 1( ) ( ),− −P P

and

Y z Pvalues of 0 have values equal to / 1( ) ( ).0 − −P P

With only two values, a standardized binary dependent variable does not 
represent variation in the underlying probability of the outcome.

Standardizing the Independent Variables

One way around the problem involves semistandardizing coefficients in 
logistic regression (also called X-standardizing). Standardizing only the 
independent variables does not require a standard deviation for the binary 
dependent variable, but it still allows for some useful comparisons. The 
semistandardized coefficients show the expected change in the logged odds 
of the outcome associated with a standard deviation change in each of the 
independent variables. With a comparable metric for the independent vari-
ables, semistandardized coefficients reflect the relative importance of vari-
ables within a model.

Semistandardized coefficients can be obtained in one of two ways. First, 
they come from multiplying by hand the logistic regression coefficient for 
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independent variables in their original metric by the standard deviation of 
the variables. The formula is simple and has some intuitive value in under-
standing how standardizing the independent variables works:

byx semi = byx unstand × sdx.

If the unstandardized coefficient shows the change in the logged odds of 
a unit change in X, then multiplying the coefficient by the standard devia-
tion shows the change in the logged odds for a standard deviation change 
in X.

For example, the logistic regression coefficient for education in its origi-
nal units is −.183 and the standard deviation of education is 2.85. The semi-
standardized coefficient equals:

−.183 × 2.85 = −.522.

The logistic regression coefficient for age is −.024, but the standard devia-
tion of 16.6 is larger. The semistandardized coefficient is

−.024 × 16.6 = −.398.

It indicates that age (−.398) is less strongly associated with smoking than 
education (−.522).

Second, to obtain semistandardized coefficients directly, the independent 
variables can be standardized before being included in the logistic regression 
model. The resulting logistic regression coefficients will show the effects on 
the logged odds of a standard deviation change in each of the independent 
variables. Table 2.8 lists the results using this procedure. First note that, after 
standardizing the independent variables using the means and standard devia-
tions of the variables for the sample used in the logistic regression analysis, 
all independent variables will have a mean of 0 and a standard deviation  
of 1. Next note that the logistic regression coefficients shown below for edu-
cation and age match (within rounding error) the calculations done by hand. 
However, the list of all semistandardized coefficients together makes for easy 
comparison of the size of the coefficients. It can be seen that education has 
the strongest effect, followed by age and Hispanic ethnicity.

The interpretation of the outcome is still in logged odds, but taking the 
exponent of the coefficients will show the change in the odds for a standard 
deviation in the independent variables.

Standardizing the Independent Variables and Dependent Variable

Semistandardized coefficients, while simple to understand and calculate, 
have a limitation. They identify the effects of different independent varia-
bles for the same dependent variable and within the same model. However, 
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the scale for the dependent variable remains as logged odds, and comparing 
the effects of independent variables across models with different dependent 
variables can be misleading. Broader comparisons are possible, as in linear 
regression, with fully standardized coefficients. A fully standardized coef-
ficient (also called XY-standardized coefficient) adjusts for the standard 
deviations of both X and Y as in the following formula:

byx full = byx unstand × (sdx / sdy).

However, the problem of how to obtain the standard deviation of Y 
remains.

To obtain a meaningful measure of the standard deviation of a binary 
dependent variable, Long (1997, pp. 70–71) recommends using the pre-
dicted logits from the model. This approach is based on the idea that the 
observed binary values of an outcome in logistic regression are manifesta-
tions of an underlying latent continuous variable. This latent continuous 
variable is assumed to have a variance but one that is unobserved. However, 
the predicted logged odds from logistic regression have an observed vari-
ance that will reflect the underlying unobserved variance. In addition, the 
error term in the logistic regression equation has a variance, arbitrarily 
defined in the logistic distribution as π2 3/ . Together, the variance of the 
predicted logits plus the variance of the error term offers an estimate of  
the variance of the unobserved continuous dependent variable. Taking the 
square root of the variance provides a measure of the standard deviation of 

Smoker Coef.
Std. 
Err. z p>|z|

[95% Conf. 
Interval]

zEducation -.5212059 .0192999 -27.01 0.000 -.559033 -.4833787

zAge -.3980747 .0195263 -20.39 0.000 -.4363455 -.3598038

zGender .126119 .0183976 6.86 0.000 .0900603 .1621777

zAfricanAmer -.0261479 .0180046 -1.45 0.146 -.0614363 .0091406

zNativeAmer .0304768 .0161067 1.89 0.058 -.0010917 .0620454

zAsianAmer -.1768843 .0238549 -7.41 0.000 -.2236391 -.1301295

zMultiRace .0584639 .0158138 3.70 0.000 .0274695 .0894584

zEthnicity -.3312603 .0223123 -14.85 0.000 -.3749915 -.287529

_cons -1.837902 .0200325 -91.75 0.000 -1.877165 -1.798639

Table 2.8  �Stata Output: Semi-Standardized Coefficients From Logistic 
Regression Model of Current Smoking With Standardized 
Independent Variables, NHIS 2017
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the continuous latent variable. Using this standard deviation for the latent 
variable in the formula for the standardized coefficient will show that the 
standard deviation change in the logged odds for a one standard deviation 
unit change in the independent variables.

In practice, the variance of predicted logged odds can be obtained by 
saving the predicted logged odds and requesting descriptive statistics. For 
the model of smoking, the variance of the predicted logged odds is .410, 
and π2/3 is 3.290. The sum is 3.700 and the square root of 3.700 is 1.924. 
To get the fully standardized coefficient for education, substitute values 
into the formula above:

−.183 × (2.85/1.924) = −.271.

Although tedious and prone to error when done by hand, the same steps can 
be used to obtain fully standardized coefficients for the other independent 
variables. For Stata users, an easier ways to get the coefficients is 
available.

A Note on SPOST

Scott Long and Jeremy Freese (2014) have created a suite of programs 
called SPOST that can be used with Stata to interpret the coefficients 
obtained from nonlinear models. SPOST is free to download by Stata users. 
The authors’ book presents a full introduction to the SPOST commands and 
their uses, and one of the many commands calculates semistandardized and 
fully standardized coefficients.

SPOST uses a simple command (“listcoef, std”) after a logistic regres-
sion command. Table 2.9 presents the output from the SPOST command. It 
lists the coefficients, z values, and probabilities of z from the usual logistic 
regression output. The column labeled bStdX lists the semistandardized or 
X-standardized coefficients. These coefficients show the expected change 
in the logged odds for a one-standard deviation change in the independent 
variables. They match the coefficients created with the independent varia-
bles as standard scores but are easier to obtain. The standard deviations 
used to obtain these X-standardized coefficients are listed in the last 
column.

Standardizing both the dependent and independent variables gives the 
fully standardized or XY-standardized coefficients in the column labeled 
bStdXY. The fully standardized coefficient for education shows that a one 
standard deviation change in education is associated with an expected 
decrease in current smoking by −.271 standard deviations. Note that the 
standard deviation for the dependent variable refers to the underlying latent 
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variable. These coefficients again show the strongest effects from educa-
tion, age, and Hispanic ethnicity.

The output lists other information that is helpful in understanding 
logistic regression. It is possible to standardize on Y but not X, just as it 
is possible to standardize on X but not Y. The table lists these Y-standard-
ized coefficients. Also, the top of the table lists the observed standard 
deviation of the binary outcome of current smoking as .361, but for rea-
sons mentioned above, that number is of limited value. The latent stand-
ard deviation of 1.924 is more meaningful. It refers to the underlying, 
unobserved distribution of smoking that produces the observed binary 
outcomes of 0 and 1.9

Caution is warranted in interpreting the meaning of a standard deviation 
change for a categorical independent variable, which is less straightforward 
than the meaning of a standard deviation change for a continuous independ-
ent variable. And comparison of standardized coefficient across groups is 
generally not recommended. But standardized coefficients are well suited 
for the interpretation of the relative strength of relationships within a single 
model and group.

Table 2.9  �SPOST Output: Standardized Coefficients From Logistic 
Regression Model of Current Smoking, NHIS 2017

Observed SD : 0.3609
Latent SD   : 1.9236

b z P>|z| bStdX bStdY bStdXY SDofX

Education -0.1831 -27.006 0.000 -0.521 -0.095 -0.271 2.847

Age -0.0240 -20.387 0.000 -0.398 -0.012 -0.207 16.610

Gender  
Male 0.2536 6.855 0.000 0.126 0.132 0.066 0.497

Race  
African 

American

 
-0.0835

 
-1.452 0.146 -0.026 -0.043 -0.014 0.313

Native 
American

0.2882 1.892 0.058 0.030 0.150 0.016 0.106

Asian 
American

-0.8101 -7.415 0.000 -0.177 -0.421 -0.092 0.218

Multiple 
Race

0.4363 3.697 0.000 0.058 0.227 0.030 0.134

Ethnicity 
Hispanic -1.0396 -14.847 0.000 -0.331 -0.540 -0.172 0.319

constant 2.0539 16.095 0.000 . . . .
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Group and Model Comparisons of Logistic  
Regression Coefficients

Researchers often test theories and hypotheses by making comparisons 
across groups and models. The comparison across groups might come 
from estimating the same models for two or more groups, such as males 
and females or young, middle-aged, and older persons. The group 
comparisons are typically tested using interaction or moderation terms. 
The comparison across models might come from sequentially adding 
confounding or mediating independent variables to a model for the 
same group and sample and comparing the coefficients across the 
models. The effect of gender on an outcome might be first shown 
without controls and then examined with controls for education and 
work status. Given the use of the same sample, the first model is nested 
within the second, and the coefficients of an independent variable 
change from the first to the second model.

Although these strategies are appropriate with multiple regression, 
they are generally not appropriate with logistic regression coefficients. 
The editors of American Sociological Review (Mustillo, Lizardo, & 
McVeigh, 2018), in presenting guidelines for authors submitting 
articles, say the following: “don’t use the coefficient of the interaction 
term to draw conclusions about statistical interaction in categorical 
models such as logit, probit, Poisson, and so on.” The same problem 
noted for interaction terms applies to comparisons of coefficients across 
separate groups and across nested models. Comparing the size of logit 
coefficients or odds ratios or using tests of significance for differences 
in the size of the logit coefficients or odds ratios presents challenges for 
interpretation.

The sources of the problems are beyond the scope of this book, but 
several articles describe them in detail (Allison, 1999; Breen et al., 2018; 
Mood, 2010; Williams, 2009). Very briefly, comparisons must assume 
that the errors are the same across the multiple groups and models, but the 
errors for the logits are not known. Comparing coefficients across 
different groups and models, which may have different but unknown error 
variances, can be misleading. Breen et al. (2018) offer an overview of 
approaches that avoid or minimize the problem of comparing coefficients 
in logistic regression and related models. Possible solutions include 
Y-standardizing or fully XY-standardizing the coefficients, focusing on 
marginal probability effects, and using linear regression with robust 
standard errors. More complex solutions involve specifying additional 
model constraints when comparing coefficients across different groups 
(Allison, 1999; Williams, 2009) or residualizing the added control 

Do n
ot c

opy
, po

st, 
or d

istr
ibu

te

Copyright ©2021 by SAGE Publications, Inc. 
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.



48    

variables when comparing coefficients across nested models for the same 
sample (Breen et al., 2018).

To illustrate one approach, consider an example of group comparisons 
using interaction terms and interpretations based on the marginal effects on 
probabilities. A model allows education and Hispanic ethnicity to interact 
in the model of smoking, as presented in Table 2.10. The positive and sig-
nificant interaction term indicates that the negative effect of Hispanic eth-
nicity is smaller at higher levels of education. The size of the Hispanic 
ethnicity logged odds coefficient should not be compared across education 
levels, but marginal effects on probabilities are appropriate for analysis 
(Long & Mustillo, 2018). Figure 2.8 shows the average marginal effect of 
Hispanic ethnicity as a discrete change across years of completed education 
as implied by the logistic regression model. As the graph shows, the nega-
tive marginal effect is smaller at higher levels of education.

Smoker Coef.
Std. 
Err. z p>|z|

[95% Conf. 
Interval]

Education -.2233305 .0078442 -28.47 0.000 -.2387048 -.2079562

Ethnicity 
Hispanic -3.115895 .2149463 -14.50 0.000 -3.537182 -2.694608

Ethnicity 
#c.Education 

Hispanic .1802465

.

.0168571 10.69 0.000 .1472071 .2132858

Age -.0243334 .0011835 -20.56 0.000 -.0266531 -.0220138

Gender  
Male .25177 .0371321 6.78 0.000 .1789925 .3245476

Race  
African 
American

-.1187599 .0579308 -2.05 0.040 -.2323022 -.0052175

Native 
American

.2494087 .1524716 1.64 0.102 -.0494302 .5482476

Asian 
American

-.8317383 .1108915 -7.50 0.000 -1.049082 -.614395

Multiple 
Race

.4151453 .1182646 3.51 0.000 .183351 .6469396

_cons 2.622645 .139376 18.82 0.000 2.349473 2.895817

Table 2.10  �Stata Output: Logistic Regression Model of Current 
Smoking With the Interaction Between Hispanic Ethnicity 
and Education, NHIS 2017
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Despite its value, the single graph simplifies the complexities involved 
with interactions in logistic regression. Interpreting the probability effects 
in general requires care and thoroughness—a recommendation that is dou-
bly important for models with interactions.

Summary

Logistic regression coefficients provide a simple linear and additive sum-
mary of the influence of a variable on the logged odds of having a charac-
teristic or experiencing an event, but they lack an intuitively meaningful 
scale of interpretation of change in the dependent variable. Standard tests 
of significance offer another common way to interpret the results, but by 
themselves say little about the substantive meaning of the coefficients. 
Raising e to the coefficient b allows interpretation of the resulting coeffi-
cient in terms of multiplicative odds or percentage change in the odds. For 
still more intuitive coefficients, the marginal effects of independent varia-
bles on the probability of an outcome are helpful. However, effects on 
probabilities depend on the values of the independent variables at which the 

Figure 2.8  �Average marginal effects of Hispanic ethnicity at values of 
education from the logistic regression model of current 
smoking with the interaction between Hispanic ethnicity and 
education, NHIS 2017.
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effect is calculated. Calculating standardized coefficients may help but 
warrant some caution given difficulties in standardizing the binary out-
come. Making comparisons across groups or, equivalently, using statistical 
interaction terms in logistic regression models similarly warrants caution, 
as do comparisons across nested models. Care and thoroughness are needed 
to fully understand the relationships being modeled in logistic regression.
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